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Temporal Data

Temporal data are also called time series.
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Monthly Rainfall in San Francisco



Spatial Data
Spatial observations can be areal units...

Percent of votes for GeorgeW. Bush in 2004 election.



Spatial Data

...or points in space.

San Jose house prices from zillow.com



What do the two have in common?
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Observations that are close in time or space are similar.



Why is this the case?

Common or similar factors drive observations that are nearby in
time and space.
• Themeteorological phenomena that drive rainfall (e.g., El
Niño) in onemonth typically lasts a fewmonths.

• Religion and race are strong predictors of voters’ choices.
These are likely to be similar in nearby regions.

• School quality is a strong predictor of house prices. Nearby
houses belong to the same school district.

To make this precise, assume that each observation yi can be
modeled as a function of predictors xi:

yi = f(xi)︸ ︷︷ ︸
trend

+ εi︸︷︷︸
noise
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LinearModels

• Wewill focus on themost commonmodel for the trend, a
linearmodel:

f(xi) = xT
i β,

although there are others (loess, splines, etc.).
• We estimateβ by ordinary least squares (OLS)

β̂
def
= argmin

β

n∑
i=1

(yi − xT
i β)

2

= argmin
β
||y −Xβ||2

= (XTX)−1XTy

• Is this a good estimator?



Properties of OLS

If we assume that y = Xβ + ε, whereE[ε|X] = 0, then
β̂ = (XTX)−1XTy

= (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε.

Then,E[β̂|X] = β + E[(XTX)−1XT ε|X] = β, so the OLS
estimator is unbiased.
In fact, it is the “best” linear unbiased estimator. (More on this next
time.)



Example: House Prices in Florida
Call:
lm(formula = price ~ size + beds + baths + new, data = houses)

Residuals:
Min 1Q Median 3Q Max

-215.747 -30.833 -5.574 18.800 164.471

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.84922 27.26116 -1.058 0.29262
size 0.11812 0.01232 9.585 1.27e-15 ***
beds -8.20238 10.44984 -0.785 0.43445
baths 5.27378 13.08017 0.403 0.68772
new 54.56238 19.21489 2.840 0.00553 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.25 on 95 degrees of freedom
Multiple R-squared: 0.7245, Adjusted R-squared: 0.713
F-statistic: 62.47 on 4 and 95 DF, p-value: < 2.2e-16



Where do the standard errors come from?
If we further assumeVar[ε|X] = σ2I , then we can calculate:

Var[β̂|X] = Var
[
β + (XTX)−1XT ε|X

]
=
(
(XTX)−1XT

)
Var [ε|X]

(
(XTX)−1XT

)T︸ ︷︷ ︸
X(XTX)−1

= σ2
(
(XTX)−1XT

) (
X(XTX)−1

)
= σ2(XTX)−1.

Since β̂ is a random vector, this is a covariancematrix:

Var(β̂) =


Var(β̂1) Cov(β̂1, β̂2) ... Cov(β̂1, β̂p)

Cov(β̂2, β̂1) Var(β̂2) ... Cov(β̂2, β̂p)... ... . . . ...
Cov(β̂p, β̂1) Cov(β̂p, β̂2) ... Var(β̂p)

 .

The square root of the diagonal elements give us the standard
errors, i.e., SE(β̂j) =

√
Var(β̂j).
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What happens if we omit a variable?
• Suppose the following model for house prices is correct:

pricei = β0 + β1 · sizei + β2 · newi︸ ︷︷ ︸
trend

+ εi︸︷︷︸
noise

,

whereE[ε|size, new] = 0 andVar[ε|size, new] ∝ I .
• Suppose we don’t actually have data about whether a house is

new or not.
• Weomit it from our model, so new becomes part of the noise.

pricei = β0 + β1 · sizei︸ ︷︷ ︸
trend

+β2 · newi + εi︸ ︷︷ ︸
noise

,

Is this a problem?
• We are fine as long as

E[noise | size] = 0 Var[noise | size] ∝ I



Omitted Variable Bias

Suppose the first condition is violated, i.e.,E[noise | size] 6= 0, i.e.,
E[β2 · new + ε | size] 6= 0.

SinceE[ε | size] = 0, this means
E[β2 · new | size] 6= 0.

Two things have to happen for this situation to occur:
• β2 6= 0: The omitted variable is relevant for predicting the
response.

• E[new | size] 6= 0: The omitted variable is correlated with a
predictor in the model.

Omitted variables are also called confounders.
SinceE[noise | size] 6= 0, β̂1 is no longer unbiased for β1.



Correlated Noise

• Suppose we are reasonably convinced that new is not
correlated with size in our dataset.

• So wewill be able to obtain an unbiased estimator for the
effect of size on house prices.

• But in order for the standard errors to be valid, we need
Var[β2 · new + ε | size] ∝ I.

• This depends on whether
Var[new | size] ∝ I,

but chances are:
Cov[newi, newj | size] 6= 0.



A Simulation Study

Suppose we have n = 20 observations from
yt = βxt + εt, β = 1

where εt is correlated (generated from an AR(1) process).

Here are theOLS estimates β̂ obtained over 10000 simulations.
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According to the simulations:

E[β̂|x] ≈ 1, so β̂ is unbiased.
SE[β̂|x] ≈ .15.



A Simulation Study

Suppose we have n = 20 observations from
yt = βxt + εt, β = 1

where εt is correlated (generated from an AR(1) process).

Here are the naive SEs from calling the lm function in R.
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Why study spatial and temporal statistics?

• The focus of this class will be supervised learning
yi = f(xi) + εi

when the error is correlated.
• Wewill assume that the omitted variables do not lead to bias
(E[ε|X] = 0).

• If the omitted variables all have a spatial or temporal
structure, then we can try to model it explicitly:

Cov[εi, εj |X] = g(d(i, j)).

• This will allow us to (1) obtain correct inferences for the
variables in the model and (2) obtain a more efficient
estimator than theOLS estimator.



Course Requirements

• We’ll have 3 homeworks, which will be coding / data analysis.
• We’ll also have 3 in-class quizzes, which will go over the
conceptual issues.

• These will be graded on a check / resubmit basis.
• For those taking the class for a letter grade, the grade will be
based primarily on a final project.



Structure of the Class

• This class will meetMonday,Wednesday, Friday at 2:15pm for
the first four weeks.

• The last four weeks will be dedicated to your final project. I
will schedule individual meetings with students, and theremay
be sporadic lectures covering topics of interest to the class.



CourseWebsite

• The course website is stats253.stanford.edu.
• All materials (syllabus, lecture slides, homeworks) will be
posted here.

• All homework will be submitted through this course website.
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