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APuzzle
Howwere these plots from Lecture 8 generated?

These are simulations of the Ising model
p(yi|y1, ..., yi−1, yi+1, ..., yn) =

eyiφ
∑

j∈N(i) yj

1 + eφ
∑

j∈N(i) yj
,

but we can’t even compute the likelihood p(y)!



Gibbs Sampling
Sometimes, it is easy to sample from the conditionals

p(yi|y1, ..., yi−1, yi+1, ..., yn),

but not the joint distribution p(y).
Gibbs sampling starts at a random point y(0) and recursively
generates

y
(k)
1 ∼ p(y1|y(k−1)2 , y

(k−1)
3 , ..., y(k−1)n )

y
(k)
2 ∼ p(y2|y(k)1 , y

(k−1)
3 , ..., y(k−1)n )

...
y
(k)
i ∼ p(yi|y(k)1 , ..., y

(k)
i−1, y

(k−1)
i+1 , ..., y(k−1)n ).

In this way, we obtain y(k). As k →∞, the distribution of y(k)

approaches p(y).



Gibbs Sampler for the Bivariate Normal

Let’s try this for an example where we know the answer:

y ∼ N
(
0,

(
1 .5
.5 1

))
.

The Gibbs sampler generates
y
(k)
1 ∼ N(.5y

(k−1)
2 , 1− (.5)2)

y
(k)
2 ∼ N(.5y

(k)
1 , 1− (.5)2)



Gibbs Sampler for the Bivariate Normal
Here’s some R code:
y1 <- 0
y2 <- 0
for(i in 1:1000) {

y1[i+1] <- rnorm(1, .5*y2[i], .75)
y2[i+1] <- rnorm(1, .5*y1[i+1], .75)

}

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

y1

y2



Gibbs Sampler for the Bivariate Normal
Now let’s try some absurd initialization:
y1 <- 0
y2 <- -15
for(i in 1:1000) {

y1[i+1] <- rnorm(1, .5*y2[i], .75)
y2[i+1] <- rnorm(1, .5*y1[i+1], .75)

}
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It’s common practice to discard the first “few” samples. This is
called the adaptation period (or burn-in period).



Why does Gibbs Sampling work?
We analyze a modification of the Gibbs sampler: a coordinate i is
chosen uniformly from {1, ..., n} and at iteration `, we update

y
(`)
i ∼ p(yi|y

(`−1)
1 , ..., y

(`−1)
i−1 , y

(`−1)
i+1 , ..., y(`−1)n ),

holding all other coordinates fixed.
• {y(`)} is aMarkov chain with transition matrix

Q(y,y′) =

{
1
np(y

′
i|y−i) if yj = y′j for all j 6= i

0 otherwise
• It is reversiblewith respect to p(y):

p(y)Q(y,y′) = p(y′)Q(y′,y).

• This implies that p is a stationary distribution of this chain:∑
y

p(y)Q(y,y′) =
∑
y

p(y′)Q(y′,y) = p(y′).

• For “well-behaved”Markov chains, the chain will converge to
the stationary distribution.



Application to the IsingModel
m <- 50
y <- matrix(rbinom(m^2, 1, .5), nrow=m, ncol=m)
phi <- 1

for(iter in 1:1000) {
for(i in 1:m) {

for(j in 1:m) {
nb <- c()
if(i > 1) nb <- c(nb, y[i-1,j])
if(i < m) nb <- c(nb, y[i+1,j])
if(j > 1) nb <- c(nb, y[i,j-1])
if(j < m) nb <- c(nb, y[i,j+1])
y[i,j] <- rbinom(1, 1, 1 / (1 + exp(-phi*mean(nb))))

}
}

}

image(y)



AMystery

This is all really cool, but what does any of this have to do with
Bayesian inference?
In fact, the Isingmodel is an example of amodel that cannot be fit in
BUGS or JAGS (because it’s a cyclic graph).
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BayesianModels
Last time, we looked at models like the Bayesian kriging model:

β1 · · · βp

y1 y2 · · · yn

ε1 ε2 · · · εn

θ1 θ2

Remember that the goal was to obtain the posterior
p(β,θ, ε|y).

We can use Gibbs sampling to obtain samples from this
posterior.



Why is Gibbs sampling easy?

β1 · · · βp

y1 y2 · · · yn

ε1 ε2 · · · εn

θ1 θ2

Gibbs sampling would require that we sample from conditional
distributions, like p(εi|y, ε−i,θ,β). Why is this easy?
Because it is a local computation on the graph—it only depends on
the parents and children of εi, not the whole graph!

p(εi|y, ε−i,θ,β) = p(εi|yi,θ) ∝ p(εi|θ)p(yi|εi).



Further Simplifications: Conjugate Priors
p(εi|yi,θ) ∝ p(εi|θ)︸ ︷︷ ︸

prior

· p(yi|εi)︸ ︷︷ ︸
likelihood

.

We can think of p(εi|yi,θ) as just the posterior of εi given yi.
In many cases, the posterior is a familiar distribution—when the
prior is the conjugate prior for the likelihood.
Example: normal priorN(0, τ2), normal likelihoodN(ε, σ2):

p(ε|y) ∝ p(ε)p(y|ε) ∝ exp

{
− ε2

2τ2

}
exp

{
−(y − ε)2

2σ2

}
∝ exp

{
−1

2

σ2 + τ2

σ2τ2
(ε− τ2

σ2 + τ2
y)2
}
,

so we see that ε|y ∼ N
(

τ2

σ2 + τ2
y,

σ2τ2

σ2 + τ2

)
. Easy to sample!



Gibbs Sampling in Bayesian Kriging

β1 · · · βp

y1 y2 · · · yn

ε1 ε2 · · · εn

θ1 θ2

Gibbs sampling in Gaussian kriging is straightforward because we
choosemost distributions to be normal to exploit conjugacy:

β ∼ N(0, ν2I)

ε|θ ∼ N(0,Σ(θ))

y|ε,β ∼ N(Xβ + ε, τ2I)

(Only challenge is θ.)



Gibbs Sampling in Bayesian Kriging

β1 · · · βp

y1 y2 · · · yn

ε1 ε2 · · · εn

θ1 θ2

Gibbs sampling in binomial kriging is not straightforward because
the binomial is not conjugate to the normal:

β ∼ N(0, ν2I)

ε|θ ∼ N(0,Σ(θ))

yi|ε,β ∼ Binom(1, f(Xβ + ε))



Other Conjugate Priors

prior likelihood
normal normal (mean)
Gamma normal (variance)
beta binomial
Gamma Poisson



Sampling fromGeneral Distributions
The distribution p(εi|yi,θ) ∝ p(εi|θ)p(yi|εi)might be someweird
distribution, like

f
(ε
i)

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

εi

How dowe sample from a distribution like this?



Sampling fromGeneral Distributions
Metropolis algorithm: To sample from f , start at ε(0). At iteration
k,
1 Propose a new ε according to a jump distribution J(ε|ε(k−1)).
2 Set ε(k) = εwith probabilitymin

(
1, f(ε)

f(ε(k−1))

)
. Otherwise,

stay put.
The distribution of ε(k) approaches f as k →∞.
Why it works: Much like Gibbs sampling, it defines aMarkov chain whose
stationary distribution is the target distribution. Collectively, these
methods are known asMarkov ChainMonte Carlo (MCMC).
No need for normalizing constants! Notice that theMetropolis algorithm
only depends on the ratio of f at two points. So we just need to know f
up to a constant. This means we can just plug in p(εi|θ)p(yi|εi) for f ,
rather than have to calculate p(εi|yi,θ) = p(εi|θ)p(yi|εi)∫

p(εi|θ)p(yi|εi) dεi .



Sampling fromGeneral Distribution
eps <- 0
for(i in 1:1000) {

eps.propose <- rnorm(1, eps[i], 1)
if(runif(1) < p(eps.propose) / p(eps[i]))

eps[i+1] <- eps.propose
else eps[i+1] <- eps[i]

}

True Distribution Metropolis Simulation
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How JAGSWorks

1 It forms a directed acyclic graph from themodel you specify.
2 The overarching algorithm is Gibbs sampling. It goes through
each node and samples from the conditional distribution at
each node.

3 If there is a conjugate relationship at that node, then the
conditional distribution is a known distribution, and JAGS can
sample directly from it.

4 If the conditional distribution is not a known distribution, then
JAGS uses theMetropolis algorithm (or other algorithms) to
sample from it.
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