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KernelMethods
Kernel methods are popular in machine learning.
The idea is that manymethods only depend on inner products
between observations.
Example (ridge regression): Like OLS, but coefficients are shrunk
towards zero:

β̂ridge = argminβ ||y −Xβ||2 + λ||β||2.
= (XTX + λI)−1XTy

Suppose I want to predict y0 at a new point x0. Ridge prediction is
ŷ0 = xT0 (XTX + λIp)

−1XTy

= xT0X
T (XXT + λIn)−1y

= K01(K11 + λI)−1y

whereK01 =
(
〈x0,x1〉 · · · 〈x0,xn〉

) and (K11)ij = 〈xi,xj〉.



KernelMethods

For now, the kernel is the linear kernel:K(xi,xj) = 〈xi,xj〉.
We can replace the linear kernel by any positive-semidefinite
kernel, such as

K(x,x′) = θ1e
−θ2||x−x′||2 .

What will this do?



Kernel Regression: A Simple Example
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Kernel Regression: A Simple Example
Linear Kernel
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Kernel Regression: A Simple Example
K(x, x′) = e−(x−x

′)2
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Why does kernel regressionwork?
TWO INTERPRETATIONS:
1 Implicit basis expansion: Since the kernel is positive
semidefinite, we can do an eigendecomposition:

K(x,x′) =

∞∑
k=1

λiϕi(x)ϕi(x
′).

We can think of this informally as:
K(x,x′) = 〈Φ(x),Φ(x′)〉,

whereΦ(x)
def
=
(√
λ1ϕ1(x)

√
λ2ϕ2(x) · · ·

).
2 Representer theorem: The solution f̂ satisfies

f̂(x) =
n∑

i=1

αiK(x,xi)

for some coefficients αi.



Illustration of the Representer Theorem
K(x, x30) = e−(x−x30)

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y



Illustration of the Representer Theorem
f̂(x) =

n∑
i=1

αie
−(x−xi)
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Illustration of the Representer Theorem
f̂(x) =

n∑
i=1

αie
−(x−xi)
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KernelMethods and Kriging

Hopefully, you’ve realized by now that a positive semidefinite
“kernel” is just a covariance function.
The prediction equation

ŷ0 = K01(K11 + λI)−1y

should remind you of the kriging prediction
ŷ0 = xT0 β̂

GLS + Σ01Σ
−1
11 (y −Xβ̂GLS).

If we do not have any predictors (the only information is the spatial
coordinates), then this reduces to the kernel predictions (without
the λI .

ŷ0 = Σ01Σ
−1
11 y.



Spatial Interpretation of Kernel Regression
Σ(x, x′) = e−(x−x

′)2
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Gaussian ProcessModel

Suppose the function f is random, sampled from aGaussian
process with mean 0 and covariance functionΣ(x,x′).
We observe noisy observations yi = f(xi) + εi, where
εi ∼ N(0, λ).
To estimate f , we should use the posterior mean f̂ = E[f |y].

f̂(x0) = Σ01(Σ11 + λI)−1y,

which again is equivalent to kriging and kernel methods!
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Point Processes
In point processes, the locations themselves are random!

−122.46 −122.45 −122.44 −122.43 −122.42 −122.41 −122.40 −122.39

37
.7

7
37

.7
8

37
.7

9
37

.8
0

Longitude

La
tit

ud
e

Typical Question: Does the process exhibit clustering?



Poisson Point Process

The (homogeneous) Poisson point process is a baseline model. It
has two defining characteristics:
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A

1. The number of events in a
given region A is Poisson, with
mean proportional to the size
ofA:

N(A) ∼ Pois(λ|A|)



Poisson Point Process

The (homogeneous) Poisson point process is a baseline model. It
has two defining characteristics:
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A

B 2. The number of events in two
disjoint regionsA andB are in-
dependent.

N(A) ⊥ N(B)

Howwould you simulate a Poisson point process?



How to test for homogeneity?
Quadrat test: Divide the domain into disjoint regions. The number
in each region should be independent Poisson, so you can calculate

X2 =
∑
r

(Or − Er)2

Er

and compare to a χ2 distribution.
R Code:
library(spatstat)
data.ppp <- ppp(data$Longitude, data$Latitude,

range(data$Longitude), range(data$Latitude))
quadrat.test(data.ppp)

Chi-squared test of CSR using quadrat counts
Pearson X2 statistic

X2 = 863.05, df = 24, p-value < 2.2e-16

Quadrats: 5 by 5 grid of tiles



How to test for homogeneity?
Ripley’sK function: Calculate the number of pairs less than a
distance r apart for every r > 0, giving us a functionK(r). Now
simulate the distribution ofK∗(r) under the null hypothesis and
compare it toK(r).

plot(envelope(data.ppp, Kest))
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So you’ve rejected the null. Nowwhat?

If the process isn’t a homogeneous Poisson process, what is it?
It can be an inhomogeneous Poisson process. There’s some
“density” λ(s) such thatN(A) is Poisson with mean∫

A
λ(s) ds.

Note that if λ(s) ≡ λ, then this reduces to a homogeneous Poisson
process.



Howdowe estimate λ(s)?
Kernel density estimation! Choose a kernel satisfying∫

D
K(s, s′) ds = 1.
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Howdowe estimate λ(s)?

The estimate is just λ̂(s) =
∑n

i=1K(s, si).
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Remaining Items

• Homework 3 is due this Friday.
• Please submit project proposals by this Friday as well. I will
respond to them over the weekend.

• Please resubmit all quizzes by next Thursday. The graded
quizzes can be picked up tomorrow at Jingshu’s office hours.

• Wemay have a guest lecture on Geographic Information
Systems (GIS) andmapping nextWednesday. I will keep you
posted by e-mail.

• Wemay or may not have final presentations. If we do, they
would be during the scheduled final exam time for this class,
which is Friday afternoon.
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