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Today, we will study three derivations of the OLS estimator

β̂OLS = argmin
β

||y −Xβ||2 = (XTX)−1XTy. (1)

To save space, we will use the shorthand X+ def
= (XTX)−1XT . X+ is called the pseudoinverse

of X because it satisfies X+X = I. (It’s not a proper inverse, though, because xx+ 6= I.)

1 As the Best Linear Unbiased Estimator

Recall that our model for the data is

y = Xβ + ε, (2)

where E[ε|X] = 0 and Var[ε|X] = σ2I.
An estimator is any rule for estimating β based on the data y. β̂OLS = X+y is a natural

estimator, of course, but there are others. For instance, we could ignore the data and always
estimate β as 0. This is not a very good estimator, but an estimator nonetheless.

What makes β̂OLS a better estimator than 0? A criterion that is often used to compare
estimators is mean-squared error (MSE):

MSEβ̂(β) =

p∑
j=1

E(β̂j − βj)2. (3)

The MSE measures how far the estimator is from the truth, in expectation. If one estimator
has a smaller MSE than another, for all values of β, then the first estimator is clearly better.

An important fact about the MSE is that it can be decomposed into the sum of a bias
and a variance term:

MSEβ[β̂] =

p∑
j=1

E(E[β̂j]− βj + β̂j − E[β̂j])
2

=

p∑
j=1

(E[β̂j]− βj)2︸ ︷︷ ︸
bias2

+ E(β̂j − E[β̂j])
2︸ ︷︷ ︸

Var[βj ]

+2 E[(E[β̂j]− βj)(β̂j − E[β̂j])︸ ︷︷ ︸
0

].

1



We can decrease MSE by either decreasing the variance or the bias. In particular, it is
sometimes desirable to trade a little bias for a massive reduction in variance.

If we only consider estimators that are unbiased (i.e., E[β̂] = β), then the problem
of minimizing the MSE becomes one of minimizing the variance. Therefore, the “best”
estimator is the one which minimizes the variance.

Unfortunately, it’s not quite true that β̂OLS minimizes the variance among all unbiased
estimators. (It would be true if we assumed that the errors ε are also normally distributed.)
However, it is true that β̂OLS minimizes the variance among all linear unbiased estimators.
(A linear estimator is an estimator of the form β̂ = Ay for some matrix A.) For this reason,
we say that β̂OLS is the best linear unbiased estimator (BLUE).

Theorem 1. β̂OLS is the best linear unbiased estimator. That is, if Ay is any other linear
unbiased estimator, then

MSEβ[Ay] =

p∑
j=1

Varβ[(Ay)j] >

p∑
j=1

Varβ[β̂OLSj ] = MSEβ[β̂OLS]. (4)

Proof. First, let’s see what unbiasedness tells us about A. Since E[Ay] = AXβ = β for all
β, this means that AX = I.

Now, let’s write the variance of Ay in terms of the variance of β̂OLS:

Var[Ay] = Var[Ay − β̂OLS + β̂OLS]

= Var[β̂OLS] + Var[Ay − β̂OLS] + 2 Cov[Ay − β̂OLS, β̂OLS].

The final term is zero:

Cov[Ay − β̂OLS, β̂OLS] = Cov[(A−X+)y, X+y]

= (A−X+) Var(y)(X+)T

= σ2(A−X+)(X+)T

= σ2(A− (XTX)−1XT )(X(XTX)−1)

= σ2 (AX − I)︸ ︷︷ ︸
0

(XTX)−1

= 0.

Therefore, we have established that:

Var[Ay] = Var[β̂OLS] + Var[Ay − β̂OLS]. (5)

The MSE is the sum of the diagonal entries of the variance matrix (i.e., the trace). By
taking the trace of both sides of (5), we see that

MSE[Ay] = tr(Var[Ay]) = tr(Var[β̂OLS]) + tr(Var[Ay − β̂OLS]) = MSE[β̂OLS] +
something
positive

,

so β̂OLS must have the smallest MSE among all estimators of the form Ay.
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2 As the Maximum Likelihood Estimator

If we assume that the errors ε are normal, then under model (2), y ∼ N(Xβ, σ2I). One
general strategy for estimating parameters is maximum likelihood estimation. It yields
estimators that are asymptotically efficient (meaning that they achieve the smallest possible
variance as n→∞).

Theorem 2. The maximum likelihood estimator (MLE) of β when y ∼ N(Xβ, σ2I) is
β̂OLS.

Proof. y has a multivariate normal distribution with likelihood

L(β) =
1

(2π)n/2(det(σ2I))1/2
exp

{
−1

2
(y −Xβ)T (σ2I)−1(y −Xβ)

}
.

We typically take logs before attempting to maximize the likelihood to make things easier.

logL(β) = −n
2

log(2πσ2)− 1

2σ2
||y −Xβ||2. (6)

Notice that the first term is just a constant (it doesn’t depend on β). So maximizing (6) is

equivalent to maximizing − 1

2σ2
||y −Xβ||2. To find the value of β that maximizes this, we

can alternatively minimize ||y −Xβ||2. But this is simply β̂OLS.

Remark 1. In this example, there was a closed-form for the MLE because it reduced to a
least-squares problem. However, most MLEs cannot be written down in closed form and have
to be computed iteratively using optimization algorithms. All optimization algorithms work
basically as follows: you start at a initial guess of the parameter and then iteratively move in
a direction of increasing likelihood until you cannot increase the likelihood anymore. Two of
the most commonly used methods (which we will use later in the course) are gradient descent
and Newton’s method.

3 As a Sample Estimate of the MMSE Predictor

Suppose x0 and y0 are random variables. We might want to predict y0 using some function
f̂(x0). A reasonable requirement is that this function minimize (mean square) prediction
error, i.e.,

argmin
f

E(y0 − f(x0))
2.

It turns out that the minimum MSE (MMSE) predictor is the conditional expectation of y0
given x0.

Theorem 3. The MMSE predictor is the conditional expectation f(x0) = E[y0|x0].
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Proof. Add and subtract E[y|x], then expand:

E(y0 − f(x0))
2 = E(y0 − E[y0|x0] + E[y0|x0]− f(x0))

2

= E(y0 − E[y0|x0])
2 + (E[y0|x0]− f(x0))

2 + 2 E[(y0 − E[y0|x0])(E(y0|x0)− f(x0))]

We can see that the last term is zero by conditioning further on x0. To avoid notational
overload, we will denote E[y0|x0] by µ(x0):

E
[
(y0 − µ(x0))(µ(x0)− f(x0))

]
= E

[
E
[
(y0 − µ(x0)) (µ(x0)− f(x0)) | x0

]]
= E

[
(µ(x0)− f(x0)) E

[
y0 − µ(x0) | x0

]]
= E

[
(µ(x0)− f(x0)) (E[y0|x0]− µ(x0))︸ ︷︷ ︸

0

]
= 0.

Thus, we have shown that

E(y0 − f(x0))
2 = E(y0 − E[y0|x0])

2 + (E[y0|x0]− f(x0))
2.

How should we choose f to minimize this? The first term on the right-hand side does not
depend on f , so we have no control over it. But we can force the second term to zero by
choosing f(x0) = E[y0|x0]. Hence, this must be the choice that minimizes the MSE.

What does this conditional expectation look like? It depends on the distribution. But if
(x0, y0) are jointly normal, then E[y0|x0] is linear. In particular, suppose(

x0

y0

)
∼ N

((
0
0

)
,

(
Σxx Σxy

Σyx Σyy

))
. (7)

Then, the conditional expectation and variance are given by

E[y0|x0] = ΣyxΣ
−1
xxx0 (8)

Var[y0|x0] = Σyy − ΣyxΣ
−1
xxΣxy. (9)

Unfortunately, we usually cannot compute Σxx, Σxy, or Σyy in practice, as these are
unknown population quantities. But they can be estimated from data (xi, yi):

Σ̂xx =
1

n
XTX (10)

Σ̂xy =
1

n
XTy (11)

Σ̂yy =
1

n
yTy. (12)

Substituting these into (8), we estimate the MMSE predictor function as

f̂(x0) =
1

n
yTX

(
1

n
XTX

)−1

x0.

If you don’t recognize this yet, try canceling the 1
n
’s and transposing it, which should be the

same (since this is a 1× 1 matrix). You should obtain:

f̂(x0) = xT0 (XTX)−1XTy = xT0 β̂
OLS.

This is of course how you would predict y0 once you had the OLS coefficients.
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