# Lecture 3 <br> Generalized Least Squares and Autocovariance Functions 

Dennis Sun<br>Stanford University<br>Stats 253

June 26, 2015
(1) A Model for Correlated Data

2 (Auto)covariance Functions
(1) A Model for Correlated Data

## (2) (Auto)covariance Functions



## The Model

Because of omitted variables, we end up with a situation where the errors are correlated:

$$
\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where $\mathrm{E}[\boldsymbol{\epsilon} \mid X]=\mathbf{0}$ and $\operatorname{Var}[\boldsymbol{\epsilon} \mid X]=\Sigma$.
For now, we will assume that $\Sigma$ is known (pretty unrealistic).

## Ordinary Least Squares

For estimating $\boldsymbol{\beta}, \hat{\boldsymbol{\beta}}^{O L S}$ is still unbiased.

$$
\mathrm{E}\left[\hat{\boldsymbol{\beta}}^{O L S}\right]=\mathrm{E}\left[\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}\right]=\left(X^{T} X\right)^{-1} X^{T} X \boldsymbol{\beta}=\boldsymbol{\beta}
$$

What is its variance?
$\operatorname{Var}\left[\hat{\boldsymbol{\beta}}^{O L S}\right]=\operatorname{Var}\left[\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}\right]=\left(X^{T} X\right)^{-1} X^{T} \Sigma X\left(X^{T} X\right)^{-1}$.
As long as you use the correct standard errors, OLS is fine.
But can we do better?

## Generalized Least Squares

Heuristic: Decorrelate the data.
First, find a matrix $\Sigma^{-1 / 2}$ such that $\Sigma^{-1}=\left(\Sigma^{-1 / 2}\right)^{T} \Sigma^{-1 / 2}$.

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}^{G L S} & =\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left\|\Sigma^{-1 / 2}(\mathbf{y}-X \boldsymbol{\beta})\right\|^{2} \\
& =\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left\|\Sigma^{-1 / 2} \mathbf{y}-\Sigma^{-1 / 2} X \boldsymbol{\beta}\right\|^{2} \\
& =\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} \mathbf{y} .
\end{aligned}
$$

Tip for the Quiz: Think about more formal justifications for $\hat{\boldsymbol{\beta}}^{G L S}$ like the ones we saw for $\hat{\boldsymbol{\beta}}^{O L S}$ in Lecture 2.

## Matrix Square Root

How do you calculate $\Sigma^{-1 / 2}$ ?
Two ways:

- If $\Sigma=V \Lambda V^{T}$ is the eigendecomposition of $\Sigma$, then $\Sigma^{-1 / 2}=V \Lambda^{-1 / 2} V^{T}$.
- Compute a Cholesky decomposition of the matrix, i.e., $\Sigma=L L^{T}$ where $L$ is lower triangular. Then $\Sigma^{-1 / 2}=L^{-1}$.

The decomposition is not unique!
Both require $O\left(n^{3}\right)$ operations. But Cholesky is more stable and not iterative. It also results in an upper triangular matrix, which is easier to solve.

## Computational Tricks of the Trade

How do you actually compute $A^{-1} \mathbf{x}$ ?
Do you calculate $A^{-1}$ and multiply by $\mathbf{x}$ ?
No! $\mathbf{z}=A^{-1} \mathbf{x}$ is the solution to the system $A \mathbf{z}=\mathbf{x}$.

- In general, a system of equations also requires $O\left(n^{3}\right)$ operations. But you'll save the $O\left(n^{2}\right)$ memory to store $A^{-1}$.
- For some matrices $A$, solving $A \mathbf{z}=\mathbf{x}$ can be more efficient. If $A$ is triangular, we can use back substitution to solve the system in $O\left(n^{2}\right)$ operations.

How would you calculate $\Sigma^{-1 / 2} \mathbf{y}=L^{-1} \mathbf{y}$ ?

## Computing the $G L S$ Estimator

$$
\hat{\boldsymbol{\beta}}^{G L S}=\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} \mathbf{y}
$$

(1) Compute the Cholesky decomposition of $\Sigma=L L^{T}$.
(2) Solve $L \mathbf{z}=\mathbf{y}$ and $L \mathbf{w}_{j}=\mathbf{x}_{j}$ (for each column $j$ of $X$ ) by back substitution. This gives us $\mathbf{z}=\Sigma^{-1 / 2} \mathbf{y}$ on $W=\Sigma^{-1 / 2} X$.
(3) Obtain $\hat{\boldsymbol{\beta}}^{G L S}$ by linear regression of $\mathbf{z}$ on $W$.

## (1) A Model for Correlated Data

(2) (Auto)covariance Functions

## What if we don't know $\Sigma$ ?

$$
\Sigma=\operatorname{Var}(\boldsymbol{\epsilon})=\left(\begin{array}{cccc}
\operatorname{Var}\left[\epsilon_{1}\right] & \operatorname{Cov}\left[\epsilon_{1}, \epsilon_{2}\right] & \ldots & \operatorname{Cov}\left[\epsilon_{n}, \epsilon_{n}\right] \\
\operatorname{Cov}\left[\epsilon_{2}, \epsilon_{1}\right] & \operatorname{Var}\left[\epsilon_{2}\right] & \ldots & \operatorname{Cov}\left[\epsilon_{n}, \epsilon_{n}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[\epsilon_{n}, \epsilon_{1}\right] & \operatorname{Cov}\left[\epsilon_{n}, \epsilon_{2}\right] & \ldots & \operatorname{Var}\left[\epsilon_{n}\right]
\end{array}\right)
$$

- Can we estimate it from the data $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ ?
- No! $\Sigma$ has $n^{2}$ entries (actually $\frac{n(n-1)}{2}$ unique entries) and we only have $n$ observations.
- We have to make more assumptions if we hope to estimate it from the data.


## Parametrizing $\Sigma$

- Assume that there is a (auto)covariance function:

$$
\Sigma_{\boldsymbol{\theta}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)
$$

that tells us the covariance between any two observations.

- x represents predictors, which is often spatial (s) or temporal $(t)$ coordinates.
- The covariance matrix is obtained by evaluating the covariance function at the data points.

$$
\Sigma_{i j}=\Sigma_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

## Stationary Covariances

Many covariance functions only depend on the $\mathbf{x}-\mathbf{x}^{\prime}$.

$$
\Sigma_{\boldsymbol{\theta}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\Sigma_{\boldsymbol{\theta}}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)
$$

Such covariance functions are called stationary.

## Example

Suppose we have a time series $y_{t}$. Here $\mathbf{x}$ represents time $t$. Stationarity means

$$
\operatorname{Cov}\left[y_{1}, y_{5}\right]=\Sigma_{\boldsymbol{\theta}}(5-1)=\operatorname{Cov}\left[y_{3}, y_{7}\right]
$$

## Isotropic Covariances

An even stronger assumption is that the covariance function depend only on the "distance" $d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ between $\mathbf{x}$ and $\mathbf{x}^{\prime}$.

Such covariance functions are called isotropic.
$d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ can be Euclidean distance $\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$, but it can also be road distance, etc.


## Common Covariance Functions

- Triangular: $\Sigma_{\boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\max \left(\theta_{1}-\theta_{2} d\left(\mathbf{x}, \mathbf{x}^{\prime}\right), 0\right)$.
- Exponential: $\Sigma_{\boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\theta_{1} \exp \left\{-\theta_{2} d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right\}$.
- Gaussian: $\Sigma_{\boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\theta_{1} \exp \left\{-\theta_{2} d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)^{2}\right\}$.

Next time, we'll talk about how to estimate $\boldsymbol{\theta}$ from the data. This time, we'll focus on properties of covariance functions.

## Valid Covariance Functions

- Covariance functions have to be positive semidefinite.
- That is, if we evaluate it at any set of $n$ points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, the resulting covariance matrix is positive semidefinite.

$$
\Sigma_{i j}=\Sigma_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- What does it mean for a symmetric matrix $A$ to be positive semidefinite? There are several equivalent definitions:
- $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all $\mathbf{x}$.
- The eigenvalues of $A$ are all $\geq 0$.
- Test yourself: Let $X$ be any matrix. Is $X^{T} X$ positive definite?


## Valid Covariance Functions

To check that a stationary covariance function $\Sigma_{\boldsymbol{\theta}}(\mathbf{h})$ is valid, we have Bochner's theorem, which says that it is valid if and only if

$$
\Sigma_{\boldsymbol{\theta}}(\mathbf{h})=\int_{\mathbb{R}^{D}} e^{i 2 \pi \mathbf{s} \cdot \mathbf{h}} d \mu(\mathbf{s})
$$

for some measure $\mu \geq 0$.
To use Bochner's Theorem in practice: Take the Fourier transform of $\Sigma_{\boldsymbol{\theta}}(\mathbf{h})$ and check that the resulting function is positive.

In general, checking that a covariance function is valid is tricky, so it's best to stick to known covariance functions.

## Obtaining New Covariance Functions from Old

Suppose $\Sigma_{1}$ and $\Sigma_{2}$ are two valid covariance functions. Then:

- $\Sigma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Sigma_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\Sigma_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is also valid.
- $\Sigma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Sigma_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \Sigma_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is also valid.

