Lecture 6 Autoregressive Processes in Time

Dennis Sun
Stanford University
Stats 253

July 6, 2015
(1) Review and Preview
(2) Autoregressive Processes
(3) Estimating Parameters of an AR process
(4) Model-Based Approach and Simplifications for AR Processes

(1) Review and Preview

(2) Autoregressive Processes
(3) Estimating Parameters of an AR process
(4) Model-Based Approach and Simplifications for AR Processes

The "Hack" Approach

Model: $\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}, \mathrm{E}[\boldsymbol{\epsilon} \mid X]=\mathbf{0}, \operatorname{Var}[\boldsymbol{\epsilon} \mid X]=\Sigma$.

- Obtain preliminary estimate $\hat{\boldsymbol{\beta}}^{O L S}$ of $\boldsymbol{\beta}$.
- Calculate residuals $\hat{\boldsymbol{\epsilon}}=\mathbf{y}-X \hat{\boldsymbol{\beta}}^{O L S}$.
- Assume a form of the covariance function and estimate it using $\hat{\epsilon}$.
- Use estimated covariance function to obtain $\hat{\Sigma}$ and calculate the $\hat{\boldsymbol{\beta}}^{G L S}$ estimator.
- (Iterate the process if necessary.)

Today

Model: $\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}, \mathrm{E}[\boldsymbol{\epsilon} \mid X]=\mathbf{0}, \operatorname{Var}[\boldsymbol{\epsilon} \mid X]=\Sigma$.

- Obtain preliminary estimate $\hat{\boldsymbol{\beta}}^{O L S}$ of $\boldsymbol{\beta}$.
- Calculate residuals $\hat{\boldsymbol{\epsilon}}=\mathbf{y}-X \hat{\boldsymbol{\beta}}^{O L S}$.
- Assume an autoregressive process for the errors and estimate it using $\hat{\epsilon}$.
- Use estimated covariance function to obtain $\hat{\Sigma}$ and calculate the $\hat{\boldsymbol{\beta}}^{G L S}$ estimator.
- (Iterate the process if necessary.)
(1) Review and Preview
(2) Autoregressive Processes
(3) Estimating Parameters of an AR process
(4) Model-Based Approach and Simplifications for AR Processes

Explicit vs. Implicit Covariance Modeling

- Before, we modeled the covariance explicitly. That is, we specified $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)$ for every i and j.
- Today, we will look at modeling the covariance implicitly.
- For example, if we had a time series, we could let

$$
\epsilon_{t}=\phi \epsilon_{t-1}+\delta_{t},
$$

where the δ 's are uncorrelated with each other and with past values of ϵ. Since each ϵ_{t} depends on the previous one, they will be correlated.

- This is an example of an autoregressive process of order 1, or $A R(1)$ process.

Autoregressive Processes

$\left\{\epsilon_{t}\right\}$ is said to be an $\operatorname{AR}(p)$ process if

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\phi_{2} \epsilon_{t-2}+\ldots+\phi_{p} \epsilon_{t-p}+\delta_{t}
$$

where $\mathrm{E}[\boldsymbol{\delta}]=\mathbf{0}$ and $\operatorname{Var}[\boldsymbol{\delta}]=\tau^{2} I$. Furthermore, δ_{t} is uncorrelated with past observations $\epsilon_{t-1}, \epsilon_{t-2}, \ldots$.

AR processes are usually assumed to be stationary. That is, $\mathrm{E}\left[\epsilon_{t}\right]=0$ and

$$
\operatorname{Cov}\left[\epsilon_{t}, \epsilon_{t+h}\right]=\Sigma(h) .
$$

Covariance Function of an AR process

Let's work out the covariance function of an $\operatorname{AR}(2)$ process.

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\phi_{2} \epsilon_{t-2}+\delta_{t}
$$

Idea: Multiply both sides of equation by ϵ_{t-h} and take expectations. This gives us the Yule-Walker equations.

$$
\mathrm{E}\left[\epsilon_{t} \epsilon_{t-h}\right]=\phi_{1} \mathrm{E}\left[\epsilon_{t-1} \epsilon_{t-h}\right]+\phi_{2} \mathrm{E}\left[\epsilon_{t-2} \epsilon_{t-h}\right]+\mathrm{E}\left[\delta_{t} \epsilon_{t-h}\right]
$$

For $h \geq 1: \Sigma(h)=\phi_{1} \Sigma(h-1)+\phi_{2} \Sigma(h-2)$.
For $h=0: \Sigma(0)=\phi_{1} \Sigma(1)+\phi_{2} \Sigma(2)+\tau^{2}$.

Correlation Function of an AR process

You can solve for the covariance function from those equations. But it's messy, and all we want to know is the general dependence as a function of the lag h.

Let's find the correlation function $\rho(h)=\Sigma(h) / \Sigma(0)$ instead. By definition, $\rho(0)=1$.

For $h \geq 1$, we have:

$$
\rho(h)=\phi_{1} \rho(h-1)+\phi_{2} \rho(h-2) .
$$

This implies that $\rho(1)=\phi_{1} \rho(0)+\phi_{2} \rho(1)$, so $\rho(1)=\frac{\phi_{1}}{1-\phi_{2}}$.
Now that we have the initial conditions $\rho(0)$ and $\rho(1)$, we can calculate $\rho(2), \rho(3), \ldots$.

The Induced Correlation Function

$$
\epsilon_{t}=.3 \epsilon_{t-1}+.2 \epsilon_{t-2}+\delta_{t}
$$

The Induced Correlation Function

$$
\epsilon_{t}=.7 \epsilon_{t-1}-.6 \epsilon_{t-2}+\delta_{t}
$$

Forecasting an AR process

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\phi_{2} \epsilon_{t-2}+\delta_{t}
$$

Suppose we observe $\epsilon_{1}, \ldots, \epsilon_{n}$. How do we predict $\epsilon_{n+1}, \epsilon_{n+2}, \ldots$? Intuitively:

$$
\begin{aligned}
& \hat{\epsilon}_{n+1}=\phi_{1} \epsilon_{n}+\phi_{2} \epsilon_{n-1} \\
& \hat{\epsilon}_{n+2}=\phi_{1} \hat{\epsilon}_{n+1}+\phi_{2} \epsilon_{n} \\
& \hat{\epsilon}_{n+3}=\phi_{1} \hat{\epsilon}_{n+2}+\phi_{2} \hat{\epsilon}_{n+1} \\
& \quad \text { and so forth... }
\end{aligned}
$$

This is called the chain rule of forecasting.
Formally: Want MMSE predictor $\hat{\epsilon}_{t}\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$:

$$
\hat{\epsilon}_{t}=\underset{f}{\operatorname{argmin}} \mathrm{E}\left(\epsilon_{t}-f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)\right)^{2}=\mathrm{E}\left[\epsilon_{t} \mid \epsilon_{1}, \ldots, \epsilon_{n}\right]
$$

Applying this formula, we obtain:

$$
\begin{aligned}
\hat{\epsilon}_{n+1}=\mathrm{E}\left[\epsilon_{n+1} \mid \epsilon_{1}, \ldots, \epsilon_{n}\right] & =\phi_{1} \epsilon_{n}+\phi_{2} \epsilon_{n-1} \\
\hat{\epsilon}_{n+2}=\mathrm{E}\left[\epsilon_{n+2} \mid \epsilon_{1}, \ldots, \epsilon_{n}\right] & =\phi_{1} \mathrm{E}\left[\epsilon_{n+1} \mid \epsilon_{1}, \ldots, \epsilon_{n}\right]+\phi_{2} \epsilon_{n} \\
& =\phi_{1} \hat{\epsilon}_{n+1}+\phi_{2} \epsilon_{n}
\end{aligned}
$$

(1) Review and Preview
(2) Autoregressive Processes
(3) Estimating Parameters of an AR process
(4) Model-Based Approach and Simplifications for AR Processes

The Setup

Now suppose that we have observations $\epsilon_{1}, \ldots, \epsilon_{n}$ (or at least $\left.\hat{\epsilon}_{1}, \ldots, \hat{\epsilon}_{n}\right)$ and wish to fit an $\operatorname{AR}(p)$ model to the data.

$$
\text { How do we estimate } \phi_{1}, \ldots, \phi_{p} \text { ? }
$$

Autoregression!

Let's write the model

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\ldots+\phi_{p} \epsilon_{t-p}+\delta_{t}, t=1, \ldots, n
$$

in matrix form:

$$
\underbrace{\left(\begin{array}{c}
\epsilon_{p+1} \\
\epsilon_{p+2} \\
\vdots \\
\epsilon_{n}
\end{array}\right)}_{\mathbf{y}}=\underbrace{\left(\begin{array}{cccc}
\epsilon_{p} & \epsilon_{p-1} & \cdots & \epsilon_{1} \\
\epsilon_{p+1} & \epsilon_{p} & \cdots & \epsilon_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\epsilon_{n-1} & \epsilon_{n-2} & \cdots & \epsilon_{n-p}
\end{array}\right)}_{X} \underbrace{\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right)}_{\boldsymbol{\beta}}+\underbrace{\left(\begin{array}{c}
\delta_{p+1} \\
\delta_{p+2} \\
\vdots \\
\delta_{n}
\end{array}\right)}_{\boldsymbol{\epsilon}}
$$

Solution: Run OLS of $\boldsymbol{\epsilon}$ on lagged copies of itself.

* Notice that we had to throw away the first p observations. This is not a problem when n is large.

Justification 1: Yule-Walker Equations (Method of Moments)

Remember that the Yule-Walker equations were:

$$
\Sigma(h)=\phi_{1} \Sigma(h-1)+\ldots+\phi_{p} \Sigma(h-p), h \geq 1 .
$$

In matrix form, they are:

$$
\underbrace{\left(\begin{array}{c}
\Sigma(1) \\
\Sigma(2) \\
\vdots \\
\Sigma(p)
\end{array}\right)}_{\mathrm{E}\left[\frac{1}{n-p} X^{T} \mathbf{y}\right]}=\underbrace{\left(\begin{array}{cccc}
\Sigma(0) & \Sigma(1) & \cdots & \Sigma(p-1) \\
\Sigma(1) & \Sigma(0) & \cdots & \Sigma(p-2) \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma(p-1) & \Sigma(p-2) & \cdots & \Sigma(0)
\end{array}\right)}_{\mathrm{E}\left[\frac{1}{n-p} X^{T} X\right]}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right)
$$

where X and \mathbf{y} are as defined on the last slide. Now replace expected values by their sample versions to solve for $\boldsymbol{\phi}$. But now we just have an OLS problem.

Justification 2: Maximum Likelihood

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\ldots+\phi_{p} \epsilon_{t-p}+\delta_{t}, \quad t=p+1, \ldots, n
$$

If we further assume that δ_{t} are normally distributed, then the log-likelihood is

$$
\begin{aligned}
\ell(\phi) & =-\frac{n}{2} \log \left(2 \pi \tau^{2}\right)-\frac{1}{2 \tau^{2}} \sum_{t=p+1}^{n} \delta_{t}^{2} \\
& =-\frac{n}{2} \log \left(2 \pi \tau^{2}\right)-\frac{1}{2 \tau^{2}} \sum_{t=p+1}^{n}\left(\epsilon_{t}-\phi_{1} \epsilon_{t-1}-\ldots-\phi_{p} \epsilon_{t-p}\right)^{2}
\end{aligned}
$$

so the MLE can be obtained by regressing $\boldsymbol{\epsilon}$ on lagged versions of itself.
(1) Review and Preview
(2) Autoregressive Processes
(3) Estimating Parameters of an AR process
(4) Model-Based Approach and Simplifications for AR Processes

Review of Model-Based Approach

The "hack" estimates the trend and covariance in two separate stages. This is unsatisfying.

If we're willing to assume that the errors $\boldsymbol{\epsilon}$ are Gaussian, then we can write down the log-likelihood

$$
\ell(\boldsymbol{\beta}, \boldsymbol{\theta})=-\frac{1}{2} \log \operatorname{det} \Sigma_{\boldsymbol{\theta}}-\frac{1}{2}(\mathbf{y}-X \boldsymbol{\beta})^{T} \Sigma_{\boldsymbol{\theta}}^{-1}(\mathbf{y}-X \boldsymbol{\beta})+\text { const. }
$$

and optimize jointly over $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$.
To do this, we first partially optimize over $\boldsymbol{\beta}$ for $\boldsymbol{\theta}$ fixed to obtain the partial likelihood:

$$
\ell(\boldsymbol{\theta})=-\frac{1}{2} \log \operatorname{det} \Sigma_{\boldsymbol{\theta}}-\frac{1}{2} \mathbf{y}^{T} \Sigma_{\boldsymbol{\theta}}^{-1}\left(I-X\left(X^{T} \Sigma_{\boldsymbol{\theta}}^{-1} X\right)^{-1} X^{T} \Sigma_{\boldsymbol{\theta}}^{-1}\right) \mathbf{y}
$$

Now optimize over $\boldsymbol{\theta}$.

Computational Challenges

$$
\ell(\boldsymbol{\theta})=-\frac{1}{2} \log \operatorname{det} \Sigma_{\boldsymbol{\theta}}-\frac{1}{2} \mathbf{y}^{T} \Sigma_{\boldsymbol{\theta}}^{-1}\left(I-X\left(X^{T} \Sigma_{\boldsymbol{\theta}}^{-1} X\right)^{-1} X^{T} \Sigma_{\boldsymbol{\theta}}^{-1}\right) \mathbf{y}
$$

This likelihood is expensive to evaluate, let alone to optimize!
The most expensive operations:

- Evaluating $\log \operatorname{det} \Sigma_{\boldsymbol{\theta}}$: requires Cholesky decomposition of $\Sigma_{\boldsymbol{\theta}}, O\left(n^{3}\right)$ operations
- "Inverting" $\Sigma_{\boldsymbol{\theta}}$: requires $O\left(n^{3}\right)$ operations in general.

Simplifications for AR Processes

For an $\operatorname{AR}(p)$ process, the inverse covariance matrix is banded.
For example, for an $\operatorname{AR}(2)$:

$$
\Sigma_{\phi}^{-1}=\left(\begin{array}{cccccccc}
c_{0} & c_{1} & c_{2} & & & & & \\
c_{1} & c_{0} & c_{1} & c_{2} & & & & \\
c_{2} & c_{1} & c_{0} & c_{1} & c_{2} & & & \\
& c_{2} & c_{1} & c_{0} & c_{1} & c_{2} & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & & & & & \\
& & & & \ddots & \ddots & \ddots & \ddots \\
& & & & & c_{2} & c_{1} & c_{0}
\end{array}\right)
$$

Why does this happen? To answer this, we have to understand what the entries in the inverse covariance matrix represent....

Inverse Covariance Matrix

Let $\Sigma=\operatorname{Var}[\boldsymbol{\epsilon}]$. What is $\left(\Sigma^{-1}\right)_{i j}$?
Let's look at $\left(\Sigma^{-1}\right)_{12}$. (Otherwise, we could just simply reorder the rows and columns.) First, let's partition Σ :

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{1: 2,1: 2} & \Sigma_{1: 2,3: n} \\
\Sigma_{3: n, 1: 2} & \Sigma_{3: n, 3: n}
\end{array}\right)
$$

Now calculate Σ^{-1}. We only want the upper left hand corner:

$$
\begin{aligned}
\left(\Sigma^{-1}\right)_{1: 2,1: 2} & =\left(\Sigma_{1: 2,1: 2}-\Sigma_{1: 2,3: n}\left(\Sigma_{3: n, 3: n}\right)^{-1} \Sigma_{3: n, 1: 2}\right)^{-1} \\
& =\left(\operatorname{Var}\left[\epsilon_{1: 2} \mid \epsilon_{3: n}\right]\right)^{-1}=\Sigma_{1: 2 \mid 3: n}^{-1} \\
& =\frac{1}{\Sigma_{1 \mid 3: n} \Sigma_{2 \mid 3: n}-\Sigma_{1,2 \mid 3: n}}\left(\begin{array}{cc}
\Sigma_{2,2 \mid 3: n} & -\Sigma_{1,2 \mid 3: n} \\
-\Sigma_{1,2 \mid 3: n} & \Sigma_{1,1 \mid 3: n}
\end{array}\right)
\end{aligned}
$$

So $\left(\Sigma^{-1}\right)_{12}$ is roughly like $-\operatorname{Cov}\left[\epsilon_{1}, \epsilon_{2} \mid \epsilon_{3: n}\right]$ (times some normalizing constant).

Inverse Covariance Matrix

$\left(\Sigma^{-1}\right)_{i j}$ measures $-\operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j} \mid \boldsymbol{\epsilon}_{-i j}\right]$. One is zero if and only if the other is.

So to argue that $\left(\Sigma^{-1}\right)_{i j}$ for $\operatorname{AR}(2)$ is zero for all $|i-j|>2$, we can equiva lently look at $\operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j} \mid \boldsymbol{\epsilon}_{-i j}\right]$:

$$
\begin{aligned}
\operatorname{Cov}\left[\epsilon_{t}, \epsilon_{t+3} \mid \boldsymbol{\epsilon}_{-t, t+3}\right] & =\operatorname{Cov}\left[\epsilon_{t}, \phi_{1} \epsilon_{t+2}+\phi_{2} \epsilon_{t+1}+\delta_{t+3} \mid \boldsymbol{\epsilon}_{-t, t+3}\right] \\
& =0 .
\end{aligned}
$$

The same argument shows that $\operatorname{Cov}\left[\epsilon_{t}, \epsilon_{t+h} \mid \epsilon_{-t, t+h}\right]=0$ for any $h>2$. So $\left(\Sigma^{-1}\right)_{i j}=0$ for all $|i-j|>2$.

How do Banded Inverse Covariances Help?

$\ell(\boldsymbol{\phi})=-\frac{1}{2} \log \operatorname{det} \Sigma_{\phi}-\frac{1}{2} \mathbf{y}^{T} \Sigma_{\phi}^{-1}\left(I-X\left(X^{T} \Sigma_{\phi}^{-1} X\right)^{-1} X^{T} \Sigma_{\phi}^{-1}\right) \mathbf{y}$.

- We can evaluate $\Sigma_{\phi}^{-1} \mathbf{v}$ in $O(n p)$ operations. (Since typically $p \ll n$, this means the second term can be evaluated in $O(n)$ operations.)
- We can row-reduce Σ_{ϕ} to an upper triangular matrix in $O\left(n p^{2}\right)$ operations. (Again, since $p \ll n$, this is just $O(n)$.) Then, the determinant is just the product of the values along the diagonal.

So we can evaluate the likelihood in $O(n)$ operations with AR processes, instead of $O\left(n^{3}\right)$ more generally.

