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@ LostTime



AR Processes in Time

e Rather than model the covariance between errors explicitly,
we assumed that the errors followed an AR(p) process:

€ = G1€i—1 + ... + Gp€t—p + It

e Thisinduced a covariance structure between the errors.

e Estimation of ¢ is easy:

e Under the “hack” approach, you will have estimates é; of the
errors, and you can estimate ¢ by regressing € on lagged
versions of itself.

o |f you follow the model-based approach, optimization over ¢ is
not difficult because E;l is banded.



@ Autoregressive Processes in Space



Sudden Infant Death Syndrome (SIDS) Data

library(spdep)

example (nc.sids)

gr.colors <- colorRampPalette(c("gray", "red"))
spplot(nc.sids, "SID74", col.regions=gr.colors(100))

g

7

AR processes have traditionally been used to model lattice data
(or areal data), like this. ’




Generalizing AR Processes to Space

There are two equivalent ways to specify a temporal AR process:
e By defining the variables in terms of each other:

p
€ = Z%’Etfj + d¢,
=1

where &, %4 N (0, 72).

e By specifying the conditional distribution:

1 u 2
pletles—1,€-2,...) < exp T 9.2 <€t - 221 ¢j€t—j>
]:

Both can be generalized naturally to space.



Generalizing AR Processes to Space

e Simultaneous Autoregression (SAR):

1
€s = (bi €s + 687
Ol 2

where N (s) denotes the neighbors of s and ds & N(0,72).
e Conditional Autoregression (CAR):

peles) xesp{ = (e —ogr O o) )

Are they the same?




Simultaneous Autoregression (SAR)

1
= IN 2

s’€N(s)

Let W be the matrix where W;; = 1/|N ()| if j € N(¢) and O
otherwise. Then, we can write the SAR model as

e =¢pWe+3,
where § ~ N(0,72I), or equivalently
(I —opW)e=24.

Therefore, for SAR, € ~ N(0, 72(I — ¢W) =11 — ¢W)~T).



Conditional Autoregression (CAR)

plesle—s) o eXp{ - 21? (es — <Z>‘Nts>| > esf>2}-

s'€N(s)
CAR s a bit trickier.
For time series, we could order the data and obtain the joint
distribution from the conditionals:
pler, ..., en) = pler) - p(ealer) - plesler, €2) - ... - plenlen, ..., €n).

This trick doesn’t work here because spatial data don't have a
natural ordering.



Conditional Autoregression (CAR)

The following result gives us the joint distribution in terms of the
conditionals, up to a normalizing constant:

Theorem (Brook’s Lemma)
Letp(e) > Oforall e. Then, for any e and €’:

p(€) ﬁ pleiler, s €21, €1, -0y €0)
p(€') P (€l€1, o €1y €y qs s €,
Proof.
p(e) _ pleley, ... €,) ple2, ..., énler)
p(€)  pleiley,....en)  ple), ... e ler)
_ p(erl€y, ..., €) .p(62‘61,€3,...,6%) ples, - enler, €2)
pleley, ) plesler s, .6q) ples, ... € ler, €2)
_ pleil€y, .. en) pleofer €5, .. 6n)
p(el|es, ..., €l) Dplesler, €, ...  €l)



Conditional Autoregression (CAR)
Apply Brook's lemma to obtain p(€)/p(0) for the CAR model:

n

H 61‘61,.. afi—170i+17---a0n)
0 ‘61, . a€i7170i+17~~70n)

7,=1

n exp{ — ﬁ(ﬁz — 02 i Wij€ — 0255 Oj)z}
2

i=1 exp{ — #(Oz — 02 i Wij€ — 255 Oj) }

:exp{— 271_2276(Gi—¢z<:wij€j>2+Q;i(¢zwijej)2}
i<i i=

j<i

1
:exp{—ﬁ (€5 —2¢€ZZWWGJ }

=1 7<i

If Wissymmetric,then237, >, e;Wije; = 32, >, eiWijej, so:

:exp{—%e (I — oW )e } soe~ N(0,72(I — W)L,



Comparison of SAR and CAR

e Simultaneous Autoregression (SAR):
e~ N0, 731 — oW) I — oW)~T).
e Conditional Autoregression (CAR). W must be symmetric,
e~ N(0,7%(I —pW)™).

Unlike with time series, the two specifications yield different
models!



Extensions

e TV can be any weight matrix in general. For example, we
might...
- give immediate neighbors more weight than two-hop
neighbors.
- weight pairs depending on the distance between them.

e Var[d] does not have to be 721

- Itiscommon to assume that it is diagonal with different
variances 7.

- Thisisimportant when analyzing data aggregated by
county/state, since each data point is based on a different
sample size n;.

- Inthis case, we typically assume 72 o i
- If D = diag(7?), then the variance of SAR and CAR become
(I-W)~ 1D(I W)~T and (I — W)~ D, respectively.

- For CAR, the requirement that W is symmetric needs to be
changed accordingly.



® Estimating Parameters



Estimating ¢

e Canwe estimate ¢ by regressing e, on its neighbors?
e No! First, each observation may have a different number of
neighbors.

e Evenif we had regularly-spaced data where every
observation has the same number of neighbors, Whittle
(1954) showed that this estimator is inconsistent.



Maximum Likelihood

The log-likelihood for the CAR model is
1
- ﬁ(y — XB)'(I—¢W)(y — XB).

Itis possible to reduce to this to a partial likelihood in just ¢ by
substituting the optimal values for 8 and 72:

—log det(T%(I — ¢W)™1)

B(¢) = (XT(I—¢W)X)T'XT(I - ¢W)y
2(68) = ~(y — XBO)T(I — sW)(y — XB(6)).

T n
Optimizing over ¢ is a one-dimensional problem that can be solved
by grid search. Note that ¢ < 1/ (W) is necessary to ensure that
the covariance matrix is positive-definite.



Maximum Likelihood

The log-partial likelihood is

—log det(r(¢)*(I—¢W) ™)~ (y=XB(¢)" (I—9W)(y—XB(¢)).

1
27(¢)?

W is usually sparse. The second term can be evaluated with just a
few matrix-vector multiplications involving (I — ¢W), which is
easy to do.

The real challenge is evaluating log det(I — ¢W). This matrix is no
longer banded. But notice that

logdet(I — ¢W) = Zlog1—¢A w)),

so we do not need to evaluate the determinant for each ¢ we test.
We just have to find the eigenvalues of W once.



@ Testing for Spatial Autocorrelation



Likelihood ratio test for testing Hy : ¢ = 0.



© /pplication to the SIDS Data



Model with Number of Births

Residuals

15

10

-10




Call: spautolm(formula = SID74 ~ BIR74, data = nc.sids,
listw = nb2listw(ncCR85_nb), family = "SAR")

Residuals:
Min 1Q Median 3Q Max
-11.10079 -1.64522 -0.60629 1.24220 14.89254

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.96393971 0.66719077 1.4448 0.1485
BIR74 0.00173979 0.00010181 17.0890 <2e-16

Lambda: 0.3494 LR test value: 7.4243 p-value: 0.006435
Numerical Hessian standard error of lambda: 0.12092

Log likelihood: -276.4861

ML residual variance (sigma squared): 14.344, (sigma: 3.7874)
Number of observations: 100

Number of parameters estimated: 4

AIC: 560.97

Note that what they call “Lambda” is what we have called ¢ above.



Model with Numbers of Births and Nonwhite
Births

Residuals
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10
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Call: spautolm(formula = SID74 ~ BIR74 + NWBIR74, data = nc.sids,
listw = nb2listw(ncCR85_nb), family = "SAR")

Residuals:
Min 1Q Median 3Q Max
-11.4951 -1.6394 -0.5963 1.3032 14.0163

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.15912054 0.46252142 2.5061 0.012207
BIR74 0.00053403 0.00020572 2.5959 0.009433
NWBIR74 0.00357220 0.00055472 6.4396 1.198e-10

Lambda: 0.091006 LR test value: 0.38216 p-value: 0.53645
Numerical Hessian standard error of lambda: 0.14599

Log likelihood: -261.2314

ML residual variance (sigma squared): 10.859, (sigma: 3.2953)
Number of observations: 100

Number of parameters estimated: 5

AIC: 532.46
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