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ARProcesses in Time

• Rather thanmodel the covariance between errors explicitly,
we assumed that the errors followed an AR(p) process:

εt = φ1εt−1 + ...+ φpεt−p + δt.

• This induced a covariance structure between the errors.
• Estimation of φ is easy:

• Under the “hack” approach, you will have estimates ε̂t of theerrors, and you can estimate φ by regressing ε̂ on lagged
versions of itself.

• If you follow themodel-based approach, optimization over φ is
not difficult becauseΣ−1

φ is banded.
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Sudden Infant Death Syndrome (SIDS) Data
library(spdep)
example(nc.sids)
gr.colors <- colorRampPalette(c("gray", "red"))
spplot(nc.sids, "SID74", col.regions=gr.colors(100))
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AR processes have traditionally been used to model lattice data
(or areal data), like this.



Generalizing AR Processes to Space
There are two equivalent ways to specify a temporal AR process:
• By defining the variables in terms of each other:

εt =

p∑
j=1

φjεt−j + δt,

where δt iid∼ N(0, τ2).
• By specifying the conditional distribution:

p(εt|εt−1, εt−2, ...) ∝ exp

− 1

2τ2

(
εt −

p∑
j=1

φjεt−j

)2 .

Both can be generalized naturally to space.



Generalizing AR Processes to Space

• Simultaneous Autoregression (SAR):
εs = φ

1

|N(s)|
∑

s′∈N(s)

εs′ + δs,

whereN(s) denotes the neighbors of s and δs iid∼ N(0, τ2).
• Conditional Autoregression (CAR):

p(εs|ε−s) ∝ exp
{
− 1

2τ2

(
εs − φ

1

|N(s)|
∑

s′∈N(s)

εs′
)2}

.

Are they the same?



Simultaneous Autoregression (SAR)
εs = φ

1

|N(s)|
∑

s′∈N(s)

εs′ + δs.

LetW be thematrix whereWij = 1/|N(i)| if j ∈ N(i) and 0
otherwise. Then, we can write the SARmodel as

ε = φWε + δ,

where δ ∼ N(0, τ2I), or equivalently
(I − φW )ε = δ.

Therefore, for SAR, ε ∼ N(0, τ2(I − φW )−1(I − φW )−T ).



Conditional Autoregression (CAR)
p(εs|ε−s) ∝ exp

{
− 1

2τ2

(
εs − φ

1

|N(s)|
∑

s′∈N(s)

εs′
)2}

.

CAR is a bit trickier.
For time series, we could order the data and obtain the joint
distribution from the conditionals:
p(ε1, ..., εn) = p(ε1) · p(ε2|ε1) · p(ε3|ε1, ε2) · ... · p(εn|ε1, ..., εn−1).

This trick doesn’t work here because spatial data don’t have a
natural ordering.



Conditional Autoregression (CAR)
The following result gives us the joint distribution in terms of the
conditionals, up to a normalizing constant:
Theorem (Brook’s Lemma)
Let p(ε) > 0 for all ε. Then, for any ε and ε′:

p(ε)

p(ε′)
=

n∏
i=1

p(εi|ε1, ..., εi−1, ε′i+1, ..., ε
′
n)

p(ε′i|ε1, ..., εi−1, ε′i+1, ..., ε
′
n)

Proof.
p(ε)

p(ε′)
=
p(ε1|ε′2, ..., ε′n)

p(ε′1|ε′2, ..., ε′n)
· p(ε2, ..., εn|ε1)
p(ε′2, ..., ε

′
n|ε1)

=
p(ε1|ε′2, ..., ε′n)

p(ε′1|ε′2, ..., ε′n)
· p(ε2|ε1, ε

′
3, ..., ε

′
n)

p(ε′2|ε1, ε′3, ..., ε′n)
· p(ε3, ..., εn|ε1, ε2)
p(ε′3, ..., ε

′
n|ε1, ε2)

=
p(ε1|ε′2, ..., ε′n)

p(ε′1|ε′3, ..., ε′n)
· p(ε2|ε1, ε

′
3, ..., ε

′
n)

p(ε′2|ε1, ε′3, ..., ε′n)
· ...



Conditional Autoregression (CAR)
Apply Brook’s lemma to obtain p(ε)/p(0) for the CARmodel:
p(ε)

p(0)
=

n∏
i=1

p(εi|ε1, ..., εi−1, 0i+1, ..., 0n)

p(0i|ε1, ..., εi−1, 0i+1, ..., 0n)

=

n∏
i=1

exp
{
− 1

2τ2

(
εi − φ

∑
j<iWijεj − φ

∑
j>i 0j

)2}
exp

{
− 1

2τ2

(
0i − φ

∑
j<iWijεj − φ

∑
j>i 0j

)2}
= exp

{
− 1

2τ2

n∑
i=1

(
εi − φ

∑
j<i

Wijεj

)2
+

1

2τ2

n∑
i=1

(
φ
∑
j<i

Wijεj

)2}
= exp

{
− 1

2τ2

n∑
i=1

(
ε2i − 2φεi

∑
j<i

Wijεj
)}

IfW is symmetric, then 2
∑
i

∑
j<i εiWijεj =

∑
i

∑
j εiWijεj , so:

= exp
{
− 1

2τ2
εT (I − φW )ε

}
, so ε ∼ N(0, τ2(I − φW )−1).



Comparison of SAR and CAR

• Simultaneous Autoregression (SAR):
ε ∼ N(0, τ2(I − φW )−1(I − φW )−T ).

• Conditional Autoregression (CAR).W must be symmetric,
ε ∼ N(0, τ2(I − φW )−1).

Unlikewith time series, the two specifications yield different
models!



Extensions
• W can be any weight matrix in general. For example, we
might...
– give immediate neighbors more weight than two-hop
neighbors.

– weight pairs depending on the distance between them.
• Var[δ] does not have to be τ2I .

– It is common to assume that it is diagonal with different
variances τ2i .– This is important when analyzing data aggregated by
county/state, since each data point is based on a different
sample size ni.– In this case, we typically assume τ2i ∝ 1

ni
.

– IfD = diag(τ2i ), then the variance of SAR and CAR become
(I −W )−1D(I −W )−T and (I −W )−1D, respectively.

– For CAR, the requirement thatW is symmetric needs to be
changed accordingly.
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Estimating φ

• Canwe estimate φ by regressing εs on its neighbors?
• No! First, each observation may have a different number of
neighbors.

• Even if we had regularly-spaced data where every
observation has the same number of neighbors,Whittle
(1954) showed that this estimator is inconsistent.



Maximum Likelihood
The log-likelihood for the CARmodel is
− log det(τ2(I − φW )−1)− 1

2τ2
(y −Xβ)T (I − φW )(y −Xβ).

It is possible to reduce to this to a partial likelihood in just φ by
substituting the optimal values for β and τ2:

β(φ) = (XT (I − φW )X)−1XT (I − φW )y

τ2(φ) =
1

n
(y −Xβ(φ))T (I − φW )(y −Xβ(φ)).

Optimizing over φ is a one-dimensional problem that can be solved
by grid search. Note that φ < 1/λ1(W ) is necessary to ensure that
the covariance matrix is positive-definite.



Maximum Likelihood
The log-partial likelihood is
− log det(τ(φ)2(I−φW )−1)− 1

2τ(φ)2
(y−Xβ(φ))T (I−φW )(y−Xβ(φ)).

W is usually sparse. The second term can be evaluated with just a
fewmatrix-vector multiplications involving (I − φW ), which is
easy to do.
The real challenge is evaluating log det(I − φW ). This matrix is no
longer banded. But notice that

log det(I − φW ) =

n∑
i=1

log(1− φλi(W )),

so we do not need to evaluate the determinant for each φwe test.
We just have to find the eigenvalues ofW once.
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Likelihood ratio test for testingH0 : φ = 0.
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Model with Number of Births

Residuals
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Call: spautolm(formula = SID74 ~ BIR74, data = nc.sids,
listw = nb2listw(ncCR85_nb), family = "SAR")

Residuals:
Min 1Q Median 3Q Max

-11.10079 -1.64522 -0.60629 1.24220 14.89254

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.96393971 0.66719077 1.4448 0.1485
BIR74 0.00173979 0.00010181 17.0890 <2e-16

Lambda: 0.3494 LR test value: 7.4243 p-value: 0.006435
Numerical Hessian standard error of lambda: 0.12092

Log likelihood: -276.4861
ML residual variance (sigma squared): 14.344, (sigma: 3.7874)
Number of observations: 100
Number of parameters estimated: 4
AIC: 560.97

Note that what they call “Lambda” is what we have called φ above.



Model with Numbers of Births andNonwhite
Births
Residuals
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Call: spautolm(formula = SID74 ~ BIR74 + NWBIR74, data = nc.sids,
listw = nb2listw(ncCR85_nb), family = "SAR")

Residuals:
Min 1Q Median 3Q Max

-11.4951 -1.6394 -0.5963 1.3032 14.0163

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.15912054 0.46252142 2.5061 0.012207
BIR74 0.00053403 0.00020572 2.5959 0.009433
NWBIR74 0.00357220 0.00055472 6.4396 1.198e-10

Lambda: 0.091006 LR test value: 0.38216 p-value: 0.53645
Numerical Hessian standard error of lambda: 0.14599

Log likelihood: -261.2314
ML residual variance (sigma squared): 10.859, (sigma: 3.2953)
Number of observations: 100
Number of parameters estimated: 5
AIC: 532.46


	Last Time
	Autoregressive Processes in Space
	Estimating Parameters
	Testing for Spatial Autocorrelation
	Application to the SIDS Data

