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TheMethods so Far

• So far, all the methods we’ve seen assume themodel
Y = trend+ noise,

where the noise is correlated.
• Themethods work best when the noise is Gaussian, but they
make sense (e.g., best linear unbiased) as long as Y is
continuous (although it may be worth trying transformations
to achieve Gaussianity).

• This model makes very little sense when Y is Poisson or
binary.



AMore GeneralModel
• Instead, we can suppose that the trendmodels the mean of
the random variable Y :

E[Y ] = trend.
• In the case where Y is normal, this reduces to themodel

Y = trend+ noise.

• But when Y is binary, the trendmodels p = P(Y = 1), e.g.,

pi =
exp

{
xTi β

}
1 + exp

{
xTi β

} p(yi) =
exp

{
yix

T
i β
}

1 + exp
{
xTi β

} ∝ exp
{
yix

T
i β
}

• WhenE[yi] = µ(xTi β), where yi is from an exponential family,we call this a generalized linearmodel. Examples include
logistic regression and Poisson regression.



ACorrelatedModel for Binary Data?

• Howwould youmodel Bernoulli random variables y1, ..., yn
with means p1, ..., pn so that they are correlated?

• For a given (positive-semidefinite) covariance matrix, there
may not exist Bernoulli random variables with that covariance.

• Covariance modeling is hopeless.
• How about an autoregressive process?

p(yi|y−i) ∝ exp
{
yi
(
xTi β + φ

∑
j

wij(yj − µ(xTj β))
)}

(Note:∑j wij = 1.) This is also called the autologisticmodel.
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IsingModel
The Isingmodel is a binary process on the lattice, used in

statistical mechanics to model particle spins.
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It is a special case of the autologistic model for xTi β = log π
1−π .

p(ys|y−s) ∝ exp
{φ
4

∑
s′∈N(s)

ysys′ + ys(log
π

1− π
− φπ)

}
.



IsingModel

Simulations of the IsingModel for φ = 1.6, 4.8, 8.0, 16.



What is its likelihood?
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p(ys|y−s) =

exp
{φ
4

∑
s′∈N(s)

ysys′ + ys(logit(π)− φπ)
}

1 + exp
{φ
4

∑
s′∈N(s)

ys′ + (logit(π)− φπ)
}

By Brook’s lemma, the distribution of y (up to a normalizing
constant) is
pφ(y)

pφ(0)
∝

n∏
s=1

pφ(ys|y1, ..., ys−1, 0, ..., 0)
pφ(0|y1, ..., ys−1, 0, ..., 0)

= exp
{φ
4

n∑
s=1

∑
s′∈N(s),s′<s

ysys′ +

n∑
s=1

ys(logit(π)− φπ)
}

= exp
{φ
8

n∑
s=1

∑
s′∈N(s)

ysys′ + (logit(π)− φπ)
n∑
s=1

ys

}



What is its likelihood?
To get the likelihood, we need the normalizing constant. Because
probabilities have to sum to 1, this is just the sum of the above over
all possible y:

pφ(y) =

pφ(y)
pφ(0)∑
y
pφ(y)
pφ(0)

=

exp
{φ
8

n∑
s=1

∑
s′∈N(s)

ysys′ + (logit(π)− φπ)
∑
s

ys

}
∑
y

exp
{φ
8

n∑
s=1

∑
s′∈N(s)

ysys′ + (logit(π)− φπ)
∑
s

ys

} .

There are 2n terms in the denominator. For a 15× 15 lattice, then
there are 2225 terms, which is huge! Evaluating the likelihood is
intractable, much less optimizing it over φ.
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Coding Estimator (Besag, 1974)
Suppose we color each site so that no site has a neighbor of the

same color:
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Then what is the likelihood of the observations at the black sites,
conditional on the white sites?

pφ(yblack|ywhite) =
∏
i black

pφ(yi|ywhite) =
∏
i black

pφ(yi|y−i).



Coding Estimator

pφ(yblack|ywhite) =
∏
i black

pφ(yi|ywhite) =
∏
i black

pφ(yi|y−i).

So one estimator is
φ̂black = argmax

φ

∏
i black

pφ(yi|y−i).

This estimator is consistent and asymptotically normal as the
number of sites increases.
But we could have reversed the roles of black and white and
obtained another estimator

φ̂white = argmax
φ

∏
i white

pφ(yi|y−i).



Pseudolikelihood Estimator (Besag, 1975)

At the point where we have two estimators
φ̂black = argmax

φ

∏
i black

pφ(yi|y−i)

φ̂white = argmax
φ

∏
i white

pφ(yi|y−i),

why not just maximize the product of the conditionals over all i?
φ̂ = argmax

φ

∏
i

pφ(yi|y−i)

What the heck is∏i pφ(yi|y−i)? It’s certainly not pφ(y), nor alikelihood of any kind, so we call it the pseudo-likelihood.
In general, if youmultiply all the conditionals together and pretend
it’s a likelihood, it’s called a pseudo-likelihood.



Results for the Pseudolikelihood

• Maximum Pseudolikelihood Estimators (MPLEs) are also
consistent and asymptotically normal.
(These essentially follow from the fact that the coding
estimators are consistent and normal, plus lots of regularity
conditions.)

• Standard errors are not available in closed form.
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Cancer Incidence Rates



MaximumPseudolikelihood Estimators

∏
s

p(ys|y−s) =
∏
s

exp
{φ
4

∑
s′∈N(s)

ysys′ + ys(logit(π)− φπ)
}

1 + exp
{φ
4

∑
s′∈N(s)

ys′ + (logit(π)− φπ)
}

=
∏
s

exp
{
ys(α+ φ1

4

∑
s′∈N(s) ys′)

}
1 + exp

{
α+ φ1

4

∑
s′∈N(s) ys′

}
where α = logit(π)− φπ. So we can obtain theMPLE by logistic
regression of ys on an intercept and the average of its neighbors.

α̂ = −1.49 φ̂ = 1.70

π̂ = .259
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