Lecture 1 Intro to Spatial and Temporal Processes

Dennis Sun Stats 253

June 23, 2014

Outline of Lecture

What is Spatial and Temporal Data? Spatial Data Temporal Data Discussion

- 2 Course Logistics
- **3** Linear Regression
- 4 Autoregressions

6 Recap

Where are we?

1 What is Spatial and Temporal Data?

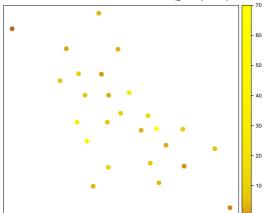
Spatial Data Temporal Data Discussion

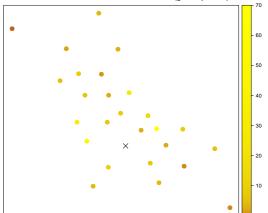
2 Course Logistics

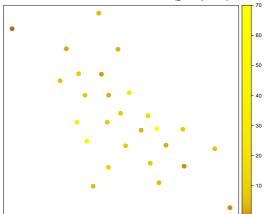
B Linear Regression

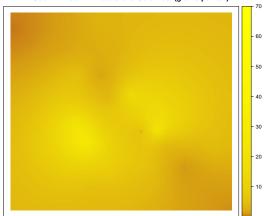
4 Autoregressions

6 Recap

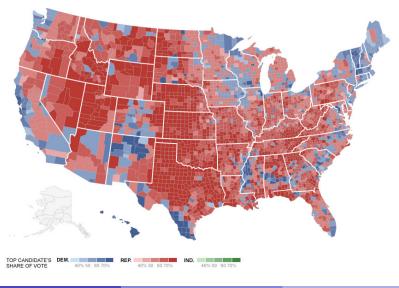




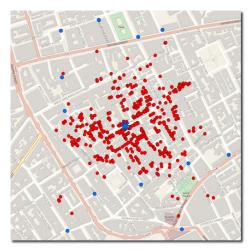




Lattice (Areal) Data



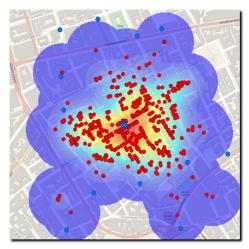
Point Processes



John Snow: 1854 Broad Street Cholera Outbreak

Spatial Data

Point Processes



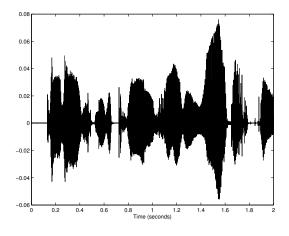
John Snow: 1854 Broad Street Cholera Outbreak

The Division of Spatial Statistics

Cressie (1993) organizes spatial statistics into these three categories.

- I Geostatistics: continuous space, labeled observations, goal is prediction
- II Lattice (areal) data: discrete space, labeled observations, goal is inference
- III Point processes: continuous space, unlabeled observations, goal is inference

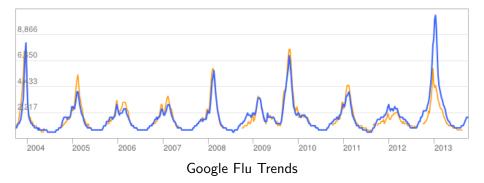
Time Series Example 1



Human Speech

Dennis Sun

Time Series Example 2



What do space and time have in common?

The observations y_t (or y_s) are correlated:

 $\operatorname{Cov}(y_t, y_{t'}) \neq 0$ for $t \neq t'$

Compare with the first assumption you see in most statistics courses:

Let y_i be i.i.d....

How are they different?

Time data is **ordered**, whereas there is no clear ordering for spatial data.

Where are we?

What is Spatial and Temporal Data? Spatial Data Temporal Data Discussion

2 Course Logistics

3 Linear Regression

4 Autoregressions

6 Recap

Organization

- Lectures: Mondays and Wednesdays 2:15-3:30pm in Education 334
- Instructors:
 - Dennis Sun
 - Edgar Dobriban
 - Jingshu Wang
- Contact? Office Hours? Sections?
- All information can be found on the course website: stats253.stanford.edu.

Content

- This is a new course.
- The material that we will be covering has not really been synthesized—because it is at the frontiers of statistics!
- We will be loosely following the books
 - Shumway and Stoffer. Time Series Analysis and Applications (with R Applications).
 - Sherman. Spatial Statistics and Spatio-Temporal Data.
- You don't have to purchase these books: they are available for free for Stanford students. (Link on course website.)
- Other useful references:
 - Bivand et al. Applied Spatial Data Analysis with R. (also available free)
 - Cressie and Wikle. Statistics for Spatio-Temporal Data.

Homeworks

- There will be about 4 short homeworks. Each homework will be a case study (data analysis).
- We will provide support for R, but you are free to use any computing environment (e.g., Python, Matlab, C....)
- You may work in pairs. If you do this, please turn in only one copy with both of your names on the front page.
- They will be graded on effort and completion only.

Project

- The goal of this course is to make a small but useful contribution to the world: e.g., a conference publication, open-source code, etc.
- This may sound intimidating, but there's actually a lot of low-hanging fruit in this subject!
- Grading rubric: produce something useful \Rightarrow A+.
- I have no qualms about giving everyone an A+ if you all earn it!

Course Requirements

- The grade will be based on the final project.
- If taking this class CR/NC, the final project is optional, but you are required to complete all homeworks.
- Please enroll in this class if you are able: I promise that you will get much more out of it! The homeworks will be short and instructional.

Where are we?

What is Spatial and Temporal Data? Spatial Data Temporal Data Discussion

2 Course Logistics

3 Linear Regression

4 Autoregressions

6 Recap

Review of Linear Regression

Model:
$$y_i = \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

- Ordinary least squares: choose $\beta_1,...,\beta_p$ by solving

Estimation:
$$\underset{\beta_1,...,\beta_p}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - (\beta_1 x_{1i} + ... + \beta_{pi} x_{pi}))^2.$$

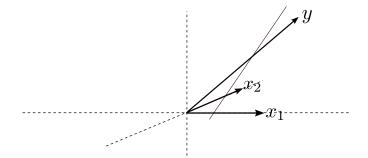
• Write in vector notation as:

Model:
$$y = X\beta + \epsilon$$
, $\epsilon \sim N(0, \sigma^2 I)$
Estimation: $\hat{\beta} = \underset{\beta}{\operatorname{argmin}} ||y - X\beta||^2$.

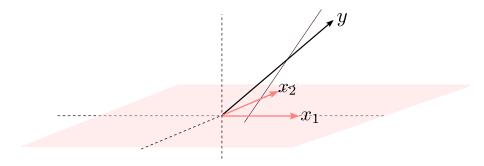
• Solve by differentiating: $\hat{\beta}$ must satisfy

$$2X^T(\boldsymbol{y} - X\hat{\boldsymbol{\beta}}) = 0 \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{y}.$$

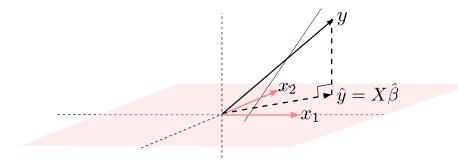
Regression: A Geometric Perspective



Regression: A Geometric Perspective



Regression: A Geometric Perspective



Properties of the Estimator

Recall that the model is

$$\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim N(0, \sigma^2 I).$$

Is the estimator $\hat{oldsymbol{eta}}$ any good for estimating $oldsymbol{eta}?$

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{y} = \boldsymbol{\beta} + (X^T X)^{-1} X^T \boldsymbol{\epsilon}$$
$$\mathbf{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$
$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^T X)^{-1}$$

It is the **best linear unbiased predictor** (i.e., with the smallest variance).

Where are we?

What is Spatial and Temporal Data? Spatial Data Temporal Data Discussion

Ourse Logistics

3 Linear Regression

4 Autoregressions

6 Recap

Introducing Dependence

• In linear regression:

$$\operatorname{Cov}(y_i, y_j) = \operatorname{Cov}(\boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i, \boldsymbol{x}_j^T \boldsymbol{\beta} + \epsilon_j) = \operatorname{Cov}(\epsilon_i, \epsilon_j) = 0$$

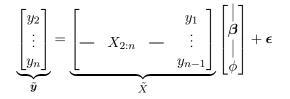
• How can we introduce dependence?

$$y_t = \boldsymbol{x}_t^T \boldsymbol{\beta} + \phi y_{t-1} + \epsilon_t$$

• How do we estimate ϕ ?

Autoregression

• Idea: Write as



- Regress \tilde{y} on \tilde{X} to obtain estimates of β and ϕ .
- Hence, we call this an **auto regressive** (AR) model, meaning "regress on itself."
- Does this method "work"?

Does it work?

Let's set $X \equiv 0$ for now. So the model is

$$y_t = \phi y_{t-1} + \epsilon_t$$

The least squares estimate is

$$\hat{\phi} = (m{y}_{1:(n-1)}^T m{y}_{1:(n-1)})^{-1} m{y}_{1:(n-1)}^T m{y}_{2:n}$$

• Is it true that
$$E(\hat{\phi}) = \phi$$
? No.

(

- Is it true that $\operatorname{Var}(\hat{\phi}) = \sigma^2(oldsymbol{y}_{1:(n-1)}^T oldsymbol{y}_{1:(n-1)})^{-1}?$ No.
- However, it turns out that $\hat{\phi}$ is consistent for ϕ .

$$\hat{\phi} \xrightarrow{p} \phi \text{ as } n \to \infty.$$

• Suppose we observe 1000 observations of a random walk:

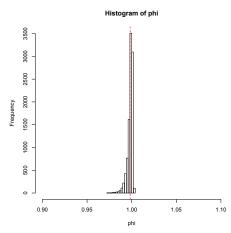
$$y_t = y_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, 1)$$

(In this case, $\phi = 1$.)

- Calculate $\hat{\phi}$ by regression.
- R Code:

```
phi <- sapply(1:10000, function(iter) {
    z <- cumsum(rnorm(1000))
    x <- z[1:999]
    y <- z[2:1000]
    return(sum(x*y)/sum(x*x))
})</pre>
```

```
hist(phi, xlim=c(.9,1.1))
abline(v=mean(phi), col='red', lty=2)
```



sd(phi) = .003

- The true standard error of $\hat{\phi}$ is .003.
- Does this agree with what linear regression would tell us?
- R Code:

```
z < - cumsum(rnorm(1000))
x <- z[1:999]
y <- z[2:1000]
model <- lm(y^x-1)
summary(model)
   Call:
   lm(formula = y \sim x - 1)
   Residuals:
       Min
                10 Median
                               30
                                      Max
    -3.2497 -0.6678 0.0396 0.6699 4.3311
   Coefficients:
     Estimate Std. Error t value Pr(>|t|)
    x 0.998757 0.001835 544.3 <2e-16 ***
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.9882 on 998 degrees of freedom

Dennis Sı	

- The true standard error of $\hat{\phi}$ is .003.
- Does this agree with what linear regression would tell us?
- R Code:

```
z < - cumsum(rnorm(1000))
x <- z[1:999]
y <- z[2:1000]
model <- lm(y^x-1)
summary(model)
    Call:
    lm(formula = y \sim x - 1)
    Residuals:
       Min
                10 Median
                               30
                                      Max
    -3.2497 -0.6678 0.0396 0.6699 4.3311
    Coefficients:
      Estimate Std. Error t value Pr(>|t|)
    x 0.998757 0.001835 544.3 <2e-16 ***
    Signif. codes: 0 (**** 0.001 (*** 0.01 (** 0.05 (.' 0.1 (' 1
    Residual standard error: 0.9882 on 998 degrees of freedom
   Dennis Sun
```

June 23, 2014

- The true standard error of $\hat{\phi}$ is .003.
- Does this agree with what linear regression would tell us?
- R Code:

```
z < - cumsum(rnorm(1000))
x <- z[1:999]
y <- z[2:1000]
model <- lm(y^x-1)
summary(model)
    Call:
    lm(formula = y \sim x - 1)
    Residuals:
       Min
                10 Median
                                30
                                      Max
    -3.2497 -0.6678 0.0396 0.6699 4.3311
    Coefficients:
      Estimate Std. Error t value Pr(>|t|)
    x 0.998757 0.001835 544.3 <2e-16 ***
    Signif. codes: 0 '*** 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Residual standard error: 0.9882 on 998 degrees of freedom
   Dennis Sun
```

June 23, 2014

Conclusions

- Linear regression gives good estimates for the coefficients of an AR process.
- However, it tends to **underestimate** the error (when observations are positively correlated).
- This will make effects look more significant than they really are!
- How can we fix this? Next lecture.

Recap

Where are we?

What is Spatial and Temporal Data? Spatial Data Temporal Data Discussion

- Ourse Logistics
- 3 Linear Regression
- 4 Autoregressions

6 Recap

What We've Learned

- The similarities and differences between spatial and temporal data.
- Linear regression
- AR processes: the simplest model for correlated data
- The advantages and shortfalls of using regression to estimate parameters in AR processes.

stats 253.stanford.edu