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Recap of Bayesian Models

Where are we?
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Bayesian Models

e Bayesian models differ from frequentist models only in that the
parameters 6 are random.

e This allows us to stack priors to create hierarchical models.

e The Gibbs sampler is a universal algorithm that allows us to efficiently
sample from the posterior in hierarchical models.
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Recap of Bayesian Models

Example: Rater Model
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Recap of Bayesian Models

Computations

e The Gibbs sampler provides samples from the posterior.

e We can use these samples to estimate the posterior distribution (e.g.,
histogram) or the posterior mean.

e JAGS will automatically simulate from the posterior.
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Results for the Rater Model

| put priors on 7y, and d; so that | could do inference on them.
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Empirical Bayes

Where are we?

® Empirical Bayes
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What would a frequentist do?

e Remember: In the Bayesian framework, to perform inference on a
parameter, you must put a prior on it. Otherwise, you must specify its
value beforehand.

o Example: Suppose there are 3 sections of a class taught by different
professors. Let y;; denote the final exam score of student j in class i.

e yi;|0i ~ N(6;,0?) (instructor effect)
o 0.~ N r?)

e Maybe we can instead try to estimate hyperparameters such as y and
72 from the data, then use N(ji,72) as the prior.

e What would our estimates of the parameters be then?
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Empirical Bayes

Empirical Bayes

The idea of estimating hyperparameters from the data is called
empirical Bayes.

It is ultimately a frequentist method because we don't need to specify
a prior on the hyperparameters we estimate!

We get hierarchical models without subjective priors! Is this too good
to be true?

What are the challenges of doing this in practice?
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Case 1: Long-Lead Forecasting of Sea Surface Temperatures
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Case 1: Long-Lead Forecasting of Sea Surface Temperatures
Problem Setup

e El Nifio is characterized by warmer sea surface temperatures (SST) in
the equatorial Pacific Ocean.

e Therefore, to predict El Nifio, one needs to forecast the SST several
months in advance.

e We observe the average monthly SST at different locations in the
Pacific: def
zr = (z(81), ., 2¢(Sm))
e Want to forecast SSTs 7 months in advance: zp ..
e This analysis is taken from Berliner, Wikle, and Cressie (2000).
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First Model: Linear Dynamical Model

State model: y; . = Py, + € €~ N(0,%)
Data model: z; = Ay, + 6, &, ~ N(0, 021)

e A contains the first k principal components of the empirical
covariance matrix over the spatial locations.

e y; represents weights on those PCs.
e Unknown parameters are ®, %, 0%, Need to put priors on all of these:

vec(®) ~ N(vec(0.97),1001)

1
S~ Wishart | ———— 1,k — 1
is art<100(k_1) k )

02 ~ InverseGaussian (0.1, 100)
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Long-Lead Forecast

Case ng of Sea Surface Temperatures

First Model: Linear Dynamical Model
1997 i} 1998
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Second Model: “Non-Linear” Model

State model: Yirr = Ory; + € €4 ~ N(O, E)
Data model: z, = Ay, + &, d; ~ N(0,0°1)
e Allow &, = ®(I;, J;) to vary with time.

e [, classifies the current regime as “cool”, “normal”, or “warm”.
Obtained by thresholding the Southern Oscillation Index (SOI):

0 if SOI; < low threshold
ILi; =<1 if SOI; in between
2 if SOI; > upper threshold

e J; is obtained by similarly thresholding a latent process W:
WilB, 7% ~ N(z{ B,7)

Dennis Sun Stats 253 — Lecture 14 August 13, 2014



Case Lead Forecasting of Sea Surface Temperatures

Second Model: “Non-Linear” Model
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Case 2: Modeling and Forecasting the Eurasian Dove Invasion

Where are we?
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Problem Setup

e The Eurasian Collared Dove (ECD) was first observed in North
America in the 80s and are now spreading quickly throughout the
continent.

e They pose a threat to native ecosystems, so we would like to forecast
their spread.

e Observe z;(s;): number of doves observed at location s;.
e This analysis is taken from Hooten, Wikle, Dorazio, and Royle (2007).
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Case 2: Modeling and Forecasting the Eurasian Dove Invasion

1991 1997 2003
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The Model

Data model: z(s;) | y(si), m ~ Bin(y:(s;), )
Y ‘ At ~ POIS(HAt)
State model: At = B(a)G(A—1;0) A1

e 7 is the probability of observing an animal. Not estimable from this
data alone, but the authors estimated it using data collected on a
related species.

e (G is a diagonal matrix that models growth, while B models
dispersion.

e The authors go on to put priors on a and 6.
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Case 2: Modeling and Forecasting the Eurasian Dove Invasion

Results
Posterior means for years in Sample
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Case 2: Modeling and Forecasting the Eurasian Dove Invasion

Results

Posterior means for future years
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Case 3: Mediterranean Surface Vector Winds

Where are we?
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Problem Setup

e The goal is to predict wind speeds and directions at different
locations over the Mediterranean.

o (24(s;),yi(s;)) is the vector indicating the wind speed in the z- and
y-directions.

e We assume that x; and y; are noisy measurements of underlying
states u; and wv;.
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Data on February 1, 2005
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A Physical State Model

e The state model is movtivated by the Rayleigh friction equations:

ou 1 0Op v 1 dp
— —fr=————7u — + fu=
ot po Ox ot
where u, v are the east-west and north-south components, p is the
sea-level pressure, and the rest are (unknown) parameters.

e An approximate solution to these equations is given by

w~_ L Oy Op oy w1 Pp
po(f2+72) 0y po(f2+72) 0z po(f2+v%) 0t  po(f? +~?) dxot
o~ f op v dp v v 1 p

~ o 2 _9 = _
po(f2+72)0x  po(f2+2) 0y  po(f2+~%) 0t  po(f+~2) Oyot

e We can discretize this as follows:

wy = a1 Dypy + a2 Dypy + azuy—1 + agDypy1
vy = b1 Dypt + bo Dypy + b3vi 1 + baDypy 1
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Case 3: Mediterranean Surface Vector Winds

Results for February 2, 2005

BHM, 10 realizations and post. mean, 2/2/2005 18:00, itime = 34, MedBhm_real_A2E3100K_uv_fmt
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Wrapping Up the Course
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A Few Last Thoughts

e The analysis of spatial and temporal data is really the analysis of
correlated data.

e “Model the mean function, use spatial and temporal methods to
model the residual.”

e There are two main ways to capture correlations: model the
correlation directly (e.g., kriging) and via autoregressions.

e Many methods that work well for time series (e.g., Kalman filter)
break down in space because the data are no longer ordered.

Thanks for a great quarter!
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