Lecture 4 State-Space Models

Dennis Sun Stats 253

July 2, 2014

Outline of Lecture

1 Last Class

- **2** Measurement Error Model
- 3 State-space models
- Wrapping Up

Where are we?

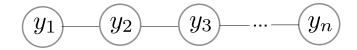
1 Last Class

2 Measurement Error Model

State-space models

Wrapping Up

Autoregressive Processes



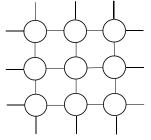
In time, there are two equivalent formulations:

•
$$y_t - \mu_t = \phi(y_{t-1} - \mu_{t-1}) + \epsilon_t$$

• $y_t \mid y_1, \dots, y_{t-1} \sim N(\mu_t + \phi(y_{t-1} - \mu_{t-1}), \sigma^2)$

Autoregressive Processes

• In space, these two formulations are different:



$$y_i - \mu_i = \phi \sum_j w_{ij}(y_j - \mu_j) + \epsilon_i$$
$$y_i \mid (y_j, j \neq i) \sim N\left(\mu_i + \phi \sum_j w_{ij}(y_j - \mu_j), \sigma^2\right)$$

- Can solve by writing in vector form.
- When is the conditional formulation well-defined?

When is CAR well-defined?

- Main question: When do conditional distributions $p(y_i|y_j, j \neq i)$ specify a valid joint distribution $p(y_1, ..., y_n)$?
- Brook's Lemma (Besag 1974):

$$\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^{n} \frac{p(y_i|y_1, \dots, y_{i-1}, 0, \dots, 0)}{p(0|y_1, \dots, y_{i-1}, 0, \dots, 0)}$$

• Allows us to calculate $p(\mathbf{y})$ up to a normalizing constant, i.e.,

$$p(\mathbf{y}) = \frac{\frac{\mathbf{p}(\mathbf{y})}{\mathbf{p}(\mathbf{0})}}{\sum_{\mathbf{y}} \frac{\mathbf{p}(\mathbf{y})}{\mathbf{p}(\mathbf{0})}}$$

• What this tells us: One necessary condition for $p(\mathbf{y})$ to be well-defined is that

$$\sum_{\mathbf{y}} \frac{p(\mathbf{y})}{p(\mathbf{0})} = \sum_{\mathbf{y}} \prod_{i=1}^{n} \frac{p(y_i|y_1, \dots, y_{i-1}, 0, \dots, 0)}{p(0|y_1, \dots, y_{i-1}, 0, \dots, 0)} < \infty$$

When is CAR well-defined?

• There are also symmetry constraints. To see this,

$$\frac{p(\mathbf{y})}{p(\mathbf{0})} = \left(\frac{p(\mathbf{0})}{p(\mathbf{y})}\right)^{-1} = \left(\prod_{i=1}^{n} \frac{p(0|0, \dots, 0, y_{i+1}, \dots, y_n)}{p(y_i|0, \dots, 0, y_{i+1}, \dots, y_n)}\right)^{-1}$$
$$= \prod_{i=1}^{n} \frac{p(y_i|0, \dots, 0, y_{i+1}, \dots, y_n)}{p(0|0, \dots, 0, y_{i+1}, \dots, y_n)}.$$

But on the previous slide we had

$$\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^{n} \frac{p(y_i|y_1, \dots, y_{i-1}, 0, \dots, 0)}{p(0|y_1, \dots, y_{i-1}, 0, \dots, 0)}.$$

These must be equal!

• The symmetry constraints will be satisfied provided that $w_{ij} = w_{ji}$.

Tradeoffs between SAR and CAR

- SAR: no constraints on w_{ij} , but $Cov(\epsilon_i, y_j) \neq 0$.
- CAR: generalizes to non-Gaussian data, requires $w_{ij} = w_{ji}$.

A Word about Homework 1

- Play around with SAR and CAR models on an image data set.
- "Big data": a 64×64 image is 4096 nodes. Processing will take some time!
- **Tips:** Form adjacency matrix W and call mat2listw(W).

Where are we?

1 Last Class

2 Measurement Error Model

State-space models

Wrapping Up

Problems with the Autoregressive Model

$$y_i = \phi \sum_j w_{ij} y_j + \epsilon_i$$

- Does not allow for measurement error.
- The fitted values are

$$\hat{y}_i = \hat{\phi} \sum_j w_{ij} y_j$$

The Measurement Error Model

$$\begin{array}{ll} \mbox{State model:} & y_i - \mu_i = \phi \sum_j w_{ij}(y_j - \mu_j) + \epsilon_i, & \epsilon_i \sim N(0, \sigma^2) \\ \mbox{Data model:} & z_i = y_i + \delta_i, & \delta_i \sim N(0, \tau^2) \end{array}$$

There are now two inferential questions:

- As before, we might wish to estimate parameters: ϕ , σ^2 , and now τ^2 .
- We might also wish to estimate the underlying state y_i from the noisy observations z_i .

Parameter Estimation in the Measurement Error Model

Write in vector form:

State model: $y = \mu + (I - \phi W)^{-1} \epsilon$ Data model: $z = y + \delta$

- We want the likelihood $L(\phi,\sigma^2,\tau^2)=p(\pmb{z}|\phi,\sigma^2,\tau^2).$
- (Note that the model is defined in terms of p(y|φ, σ²)p(z|y, τ²).)
 z = μ + (I φW)⁻¹ε + δ so

$$\boldsymbol{z} \sim N(\boldsymbol{\mu}, \sigma^2 (I - \phi W)^{-1} (I - \phi W^T)^{-1} + \tau^2 I)$$

- Since we now know $p(\pmb{z}|\phi,\sigma^2,\tau^2)$, we can now calculate the MLE.

State Estimation in the Measurement Error Model

- How should we optimally estimate y_i , having observed z_i ?
- Criterion: Find f(z) to minimize the mean squared error:

$$\hat{f} = \operatorname*{argmin}_{f} \mathrm{E} || \boldsymbol{y} - f(\boldsymbol{z}) ||^{2}.$$

- Solution: $\hat{f}(z) = E(y|z)$, the minimum mean squared error (MMSE) estimator.
- Question: How do we actually calculate E(y|z)?
- We will use the fact that $\begin{pmatrix} y\\z \end{pmatrix}$ is a multivariate normal.

A Detour into Multivariate Normal Theory

• We say
$${\boldsymbol x} \sim N({\boldsymbol \mu}, \Sigma)$$
 if

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right\}.$$

- Can show that $\mathrm{E}({\boldsymbol{x}}) = {\boldsymbol{\mu}}$ and $\mathrm{Var}({\boldsymbol{x}}) = \Sigma.$
- If x is partitioned so that

$$\begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right),$$

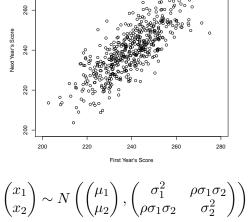
then we have

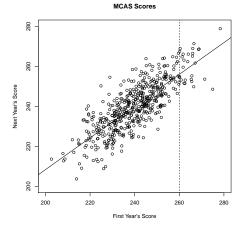
$$E(\boldsymbol{x}_{1}|\boldsymbol{x}_{2}) = \boldsymbol{\mu}_{1} + \Sigma_{12}\Sigma_{22}^{-1}(\boldsymbol{x}_{2} - \boldsymbol{\mu}_{2})$$
$$Var(\boldsymbol{x}_{1}|\boldsymbol{x}_{2}) = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$

280

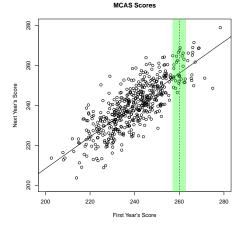
MCAS Scores

0

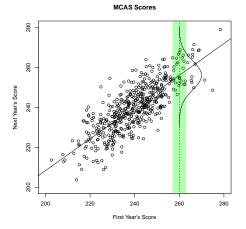




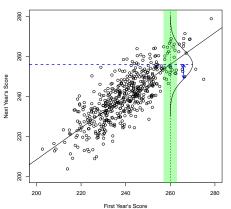
What is $x_1 | x_2 = 260$?



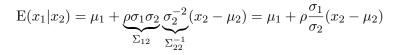
What is $x_1 | x_2 = 260$?

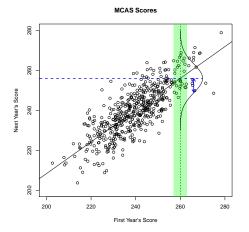


What is $x_1 | x_2 = 260$?



MCAS Scores





$$\operatorname{Var}(x_2|x_1) = \sigma_2^2 - (\rho\sigma_1\sigma_2)\sigma_1^{-2}(\rho\sigma_1\sigma_2) = \sigma_2^2(1-\rho^2)$$

Let's apply the theory

Recall the measurement error model:

State model: $y = \mu + (I - \phi W)^{-1} \epsilon$ Data model: $z = y + \delta$

What is $E(\boldsymbol{y}|\boldsymbol{z})$?

• First need to determine joint distribution

$$\begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{z} \end{pmatrix} \sim N\left(\begin{pmatrix} \boldsymbol{\mu}_{\boldsymbol{y}} \\ \boldsymbol{\mu}_{\boldsymbol{z}} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{y}} & \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{z}} \\ \boldsymbol{\Sigma}_{\boldsymbol{z}\boldsymbol{y}} & \boldsymbol{\Sigma}_{\boldsymbol{z}\boldsymbol{z}} \end{pmatrix} \right).$$

• Then apply formula $E(\boldsymbol{y}|\boldsymbol{z}) = \boldsymbol{\mu}_{\boldsymbol{y}} + \Sigma_{\boldsymbol{y}\boldsymbol{z}}\Sigma_{\boldsymbol{z}\boldsymbol{z}}^{-1}(\boldsymbol{z} - \boldsymbol{\mu}_{\boldsymbol{z}}).$

Summary

- We introduced the **measurement error model**, which assumes the observations contain noise.
- There are two problems:
 - Parameter estimation: essentially the same as with the AR model.
 - State estimation: calculate the conditional expectation E(y|z).

Where are we?

1 Last Class

2 Measurement Error Model

3 State-space models

Wrapping Up

State-space model

The **state-space model** is a (multivariate) generalization of the measurement error model.

State model:
$$m{y}_i - m{\mu}_i = \sum_j w_{ij} \Phi(m{y}_j - m{\mu}_j) + m{\epsilon}_i$$

Data model: $m{z}_i = A m{y}_i + m{\delta}_i$

Since each observation is now a vector, if we aggregate all the observations together, we get a matrix, i.e.,

$$Y = \begin{bmatrix} | & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_n \\ | & | \end{bmatrix}$$

so the state model is something like

$$Y - M = \Phi(Y - M)W^T + E.$$

State-space model

State model: $Y - M = \Phi(Y - M)W^T + E$ Data model:Z = AY + D

- Still possible to write down $p(Z|\Phi, \sigma^2, A, \tau^2)$. Requires use of vec operator and tensor products \otimes .
- Hence, principles of inference remain the same:
 - parameter estimation by MLE
 - state estimation by MMSE (i.e., $E(\boldsymbol{y}|\boldsymbol{z}) = \mu_{\boldsymbol{y}} + \Sigma_{\boldsymbol{y}\boldsymbol{z}}\Sigma_{\boldsymbol{z}\boldsymbol{z}}^{-1}(\boldsymbol{z} \mu_{\boldsymbol{z}})$)
- Dimensions become enormous!

Bottom line: major pain

The Kalman Filter

When working with temporal data, there is a cleverer way to do state estimation.

State model:
$$y_t - \mu_t = \Phi(y_{t-1} - \mu_{t-1}) + \epsilon_t$$
Data model: $z_t = Ay_t + \delta_t$

Goals: Calculate $\boldsymbol{y}_{t|t} = \mathrm{E}(\boldsymbol{y}_t | \boldsymbol{z}_1, ..., \boldsymbol{z}_t)$ and $P_{t|t} = \mathrm{E}(\boldsymbol{y}_t - \boldsymbol{y}_{t|t})(\boldsymbol{y}_t - \boldsymbol{y}_{t|t})^T$.

The Kalman Filter

- $y_{t|t}$ and $P_{t|t}$ can be calculated in terms of $y_{t|t-1}$ and $P_{t|t-1}$.
- Likewise, $y_{t+1|t}$ and $P_{t+1|t}$ can be calculated in terms of $y_{t|t}$ and $P_{t|t}$.
- Alternating between filtering and one-step-ahead prediction gives the Kalman filter.

Filtering

$$y_{t|t} = y_{t|t-1} + K_t(z_t - Ay_{t|t-1})$$

 $P_{t|t} = (I - K_t A)P_{t|t-1}$

where $K_t = P_{t|t-1}A^T (AP_{t|t-1}A^T + \tau^2 I)^{-1}$.

One-Step Ahead Prediction

$$y_{t+1|t} = \mu_{t+1} + \Phi(y_{t|t} - \mu_t)$$
$$P_{t+1|t} = \Phi P_{t|t} \Phi^T + \sigma^2 I$$

Kalman Filter Summary

- The Kalman filter provides an efficient algorithm for state estimation in a state-space model.
- It turns out that having an efficient algorithm for state estimation also simplifies parameter estimation. (See Shumway and Stoffer Ch. 6.)
- To my knowledge, no analog of Kalman filter in space.
- State-space models in space: modeling and efficient algorithms. (Project idea?)

Where are we?

1 Last Class

2 Measurement Error Model

State-space models

Wrapping Up

Summary of Today's Lecture

- Extended AR model to allow for measurement noise.
- Measurement noise model is a special case of a state-space model.
- State estimation requires some knowledge about multivariate normals.
- The Kalman filter is a custom algorithm to do state estimation for time series.

Administrivia

- Homework 1 due Monday.
- Workshops start tomorrow.
 - Edgar: Thursdays 2:30-4:30pm in 380-380F
 - Jingshu: Fridays 1-3pm in Sequoia 200
- Please use Piazza!