Lecture 4
 State-Space Models

Dennis Sun
Stats 253

July 2, 2014

Outline of Lecture

(1) Last Class
(2) Measurement Error Model
(3) State-space models
(4) Wrapping Up

Where are we?

(1) Last Class

(2) Measurement Error Model

(3) State-space models
(4) Wrapping Up

Autoregressive Processes

In time, there are two equivalent formulations:

- $y_{t}-\mu_{t}=\phi\left(y_{t-1}-\mu_{t-1}\right)+\epsilon_{t}$
- $y_{t} \mid y_{1}, \ldots, y_{t-1} \sim N\left(\mu_{t}+\phi\left(y_{t-1}-\mu_{t-1}\right), \sigma^{2}\right)$

Autoregressive Processes

- In space, these two formulations are different:

$$
\begin{gathered}
y_{i}-\mu_{i}=\phi \sum_{j} w_{i j}\left(y_{j}-\mu_{j}\right)+\epsilon_{i} \\
y_{i} \mid\left(y_{j}, j \neq i\right) \sim N\left(\mu_{i}+\phi \sum_{j} w_{i j}\left(y_{j}-\mu_{j}\right), \sigma^{2}\right)
\end{gathered}
$$

- Can solve by writing in vector form.
- When is the conditional formulation well-defined?

When is CAR well-defined?

- Main question: When do conditional distributions $p\left(y_{i} \mid y_{j}, j \neq i\right)$ specify a valid joint distribution $p\left(y_{1}, \ldots, y_{n}\right)$?
- Brook's Lemma (Besag 1974):

$$
\frac{p(\mathbf{y})}{p(\mathbf{0})}=\prod_{i=1}^{n} \frac{p\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}{p\left(0 \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}
$$

- Allows us to calculate $p(\mathbf{y})$ up to a normalizing constant, i.e.,

$$
p(\mathbf{y})=\frac{\frac{\mathbf{p}(\mathbf{y})}{\mathbf{p}(\mathbf{0})}}{\sum_{\mathbf{y}} \frac{\mathbf{p}(\mathbf{y})}{\mathbf{p}(\mathbf{0})}}
$$

- What this tells us: One necessary condition for $p(\mathbf{y})$ to be well-defined is that

$$
\sum_{\mathbf{y}} \frac{p(\mathbf{y})}{p(\mathbf{0})}=\sum_{\mathbf{y}} \prod_{i=1}^{n} \frac{p\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}{p\left(0 \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}<\infty
$$

When is CAR well-defined?

- There are also symmetry constraints. To see this,

$$
\begin{aligned}
\frac{p(\mathbf{y})}{p(\mathbf{0})}=\left(\frac{p(\mathbf{0})}{p(\mathbf{y})}\right)^{-1} & =\left(\prod_{i=1}^{n} \frac{p\left(0 \mid 0, \ldots, 0, y_{i+1}, \ldots, y_{n}\right)}{p\left(y_{i} \mid 0, \ldots, 0, y_{i+1}, \ldots, y_{n}\right)}\right)^{-1} \\
& =\prod_{i=1}^{n} \frac{p\left(y_{i} \mid 0, \ldots, 0, y_{i+1}, \ldots, y_{n}\right)}{p\left(0 \mid 0, \ldots, 0, y_{i+1}, \ldots, y_{n}\right)}
\end{aligned}
$$

But on the previous slide we had

$$
\frac{p(\mathbf{y})}{p(\mathbf{0})}=\prod_{i=1}^{n} \frac{p\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}{p\left(0 \mid y_{1}, \ldots, y_{i-1}, 0, \ldots, 0\right)}
$$

These must be equal!

- The symmetry constraints will be satisfied provided that $w_{i j}=w_{j i}$.

Tradeoffs between SAR and CAR

- SAR: no constraints on $w_{i j}$, but $\operatorname{Cov}\left(\epsilon_{i}, y_{j}\right) \neq 0$.
- CAR: generalizes to non-Gaussian data, requires $w_{i j}=w_{j i}$.

A Word about Homework 1

- Play around with SAR and CAR models on an image data set.
- "Big data" : a 64×64 image is 4096 nodes. Processing will take some time!
- Tips: Form adjacency matrix W and call mat2listw(W).

Where are we?

(1) Last Class
(2) Measurement Error Model
(3) State-space models
(4) Wrapping Up

Problems with the Autoregressive Model

$$
y_{i}=\phi \sum_{j} w_{i j} y_{j}+\epsilon_{i}
$$

- Does not allow for measurement error.
- The fitted values are

$$
\hat{y}_{i}=\hat{\phi} \sum_{j} w_{i j} y_{j}
$$

The Measurement Error Model

State model: $\quad y_{i}-\mu_{i}=\phi \sum w_{i j}\left(y_{j}-\mu_{j}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$

Data model:

$$
z_{i}=y_{i}+\delta_{i},
$$

$$
\delta_{i} \sim N\left(0, \tau^{2}\right)
$$

There are now two inferential questions:

- As before, we might wish to estimate parameters: ϕ, σ^{2}, and now τ^{2}.
- We might also wish to estimate the underlying state y_{i} from the noisy observations z_{i}.

Parameter Estimation in the Measurement Error Model

Write in vector form:

$$
\begin{aligned}
\text { State model: } & \boldsymbol{y}=\boldsymbol{\mu}+(I-\phi W)^{-1} \boldsymbol{\epsilon} \\
\text { Data model: } & \boldsymbol{z}=\boldsymbol{y}+\boldsymbol{\delta}
\end{aligned}
$$

- We want the likelihood $L\left(\phi, \sigma^{2}, \tau^{2}\right)=p\left(\boldsymbol{z} \mid \phi, \sigma^{2}, \tau^{2}\right)$.
- (Note that the model is defined in terms of $p\left(\boldsymbol{y} \mid \phi, \sigma^{2}\right) p\left(\boldsymbol{z} \mid \boldsymbol{y}, \tau^{2}\right)$.)
- $\boldsymbol{z}=\boldsymbol{\mu}+(I-\phi W)^{-1} \boldsymbol{\epsilon}+\boldsymbol{\delta}$ so

$$
\boldsymbol{z} \sim N\left(\boldsymbol{\mu}, \sigma^{2}(I-\phi W)^{-1}\left(I-\phi W^{T}\right)^{-1}+\tau^{2} I\right)
$$

- Since we now know $p\left(\boldsymbol{z} \mid \phi, \sigma^{2}, \tau^{2}\right)$, we can now calculate the MLE.

State Estimation in the Measurement Error Model

- How should we optimally estimate y_{i}, having observed z_{i} ?
- Criterion: Find $f(\boldsymbol{z})$ to minimize the mean squared error:

$$
\hat{f}=\underset{f}{\operatorname{argmin}} \mathrm{E}\|\boldsymbol{y}-f(\boldsymbol{z})\|^{2} .
$$

- Solution: $\hat{f}(\boldsymbol{z})=\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})$, the minimum mean squared error (MMSE) estimator.
- Question: How do we actually calculate $\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})$?
- We will use the fact that $\binom{\boldsymbol{y}}{\boldsymbol{z}}$ is a multivariate normal.

A Detour into Multivariate Normal Theory

- We say $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \Sigma)$ if

$$
p(\boldsymbol{x})=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} .
$$

- Can show that $\mathrm{E}(\boldsymbol{x})=\boldsymbol{\mu}$ and $\operatorname{Var}(\boldsymbol{x})=\Sigma$.
- If \boldsymbol{x} is partitioned so that

$$
\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} \sim N\left(\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right),
$$

then we have

$$
\begin{aligned}
\mathrm{E}\left(\boldsymbol{x}_{1} \mid \boldsymbol{x}_{2}\right) & =\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right) \\
\operatorname{Var}\left(\boldsymbol{x}_{1} \mid \boldsymbol{x}_{2}\right) & =\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

2D Picture of the Conditional Distribution

$$
\binom{x_{1}}{x_{2}} \sim N\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right)
$$

2D Picture of the Conditional Distribution

What is $x_{1} \mid x_{2}=260$?

2D Picture of the Conditional Distribution

What is $x_{1} \mid x_{2}=260$?

2D Picture of the Conditional Distribution

What is $x_{1} \mid x_{2}=260$?

2D Picture of the Conditional Distribution

2D Picture of the Conditional Distribution

$\operatorname{Var}\left(x_{2} \mid x_{1}\right)=\sigma_{2}^{2}-\left(\rho \sigma_{1} \sigma_{2}\right) \sigma_{1}^{-2}\left(\rho \sigma_{1} \sigma_{2}\right)=\sigma_{2}^{2}\left(1-\rho^{2}\right)$

Let's apply the theory

Recall the measurement error model:

$$
\begin{aligned}
\text { State model: } & \boldsymbol{y}=\boldsymbol{\mu}+(I-\phi W)^{-1} \boldsymbol{\epsilon} \\
\text { Data model: } & \boldsymbol{z}=\boldsymbol{y}+\boldsymbol{\delta}
\end{aligned}
$$

What is $\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})$?

- First need to determine joint distribution

$$
\binom{\boldsymbol{y}}{\boldsymbol{z}} \sim N\left(\binom{\boldsymbol{\mu}_{\boldsymbol{y}}}{\boldsymbol{\mu}_{\boldsymbol{z}}},\left(\begin{array}{ll}
\Sigma_{\boldsymbol{y}} & \Sigma_{\boldsymbol{y} \boldsymbol{z}} \\
\Sigma_{\boldsymbol{z} \boldsymbol{y}} & \Sigma_{\boldsymbol{z}}
\end{array}\right)\right) .
$$

- Then apply formula $\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})=\boldsymbol{\mu}_{\boldsymbol{y}}+\Sigma_{\boldsymbol{y} \boldsymbol{z}} \Sigma_{\boldsymbol{z} \boldsymbol{z}}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\boldsymbol{z}}\right)$.

Summary

- We introduced the measurement error model, which assumes the observations contain noise.
- There are two problems:
- Parameter estimation: essentially the same as with the AR model.
- State estimation: calculate the conditional expectation $\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})$.

Where are we?

(1) Last Class

(2) Measurement Error Model

(3) State-space models

(4) Wrapping Up

State-space model

The state-space model is a (multivariate) generalization of the measurement error model.

$$
\text { State model: } \quad \boldsymbol{y}_{i}-\boldsymbol{\mu}_{i}=\sum_{j} w_{i j} \Phi\left(\boldsymbol{y}_{j}-\boldsymbol{\mu}_{j}\right)+\boldsymbol{\epsilon}_{i}
$$

Data model:

$$
\boldsymbol{z}_{i}=A \boldsymbol{y}_{i}+\boldsymbol{\delta}_{i}
$$

Since each observation is now a vector, if we aggregate all the observations together, we get a matrix, i.e.,

$$
Y=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{y}_{1} & \cdots & \boldsymbol{y}_{n} \\
\mid & & \mid
\end{array}\right]
$$

so the state model is something like

$$
Y-M=\Phi(Y-M) W^{T}+E .
$$

State-space model

State model:
Data model:

$$
\begin{aligned}
Y-M & =\Phi(Y-M) W^{T}+E \\
Z & =A Y+D
\end{aligned}
$$

- Still possible to write down $p\left(Z \mid \Phi, \sigma^{2}, A, \tau^{2}\right)$. Requires use of vec operator and tensor products \otimes.
- Hence, principles of inference remain the same:
- parameter estimation by MLE
- state estimation by MMSE (i.e., $\mathrm{E}(\boldsymbol{y} \mid \boldsymbol{z})=\mu_{\boldsymbol{y}}+\Sigma_{\boldsymbol{y} z} \Sigma_{\boldsymbol{z} \boldsymbol{z}}^{-1}\left(\boldsymbol{z}-\mu_{\boldsymbol{z}}\right)$)
- Dimensions become enormous!

Bottom line: major pain

The Kalman Filter

When working with temporal data, there is a cleverer way to do state estimation.

State model:

$$
\begin{aligned}
\boldsymbol{y}_{t}-\boldsymbol{\mu}_{t} & =\Phi\left(\boldsymbol{y}_{t-1}-\boldsymbol{\mu}_{t-1}\right)+\boldsymbol{\epsilon}_{t} \\
\boldsymbol{z}_{t} & =A \boldsymbol{y}_{t}+\boldsymbol{\delta}_{t}
\end{aligned}
$$

Data model:
Goals: Calculate $\boldsymbol{y}_{t \mid t}=\mathrm{E}\left(\boldsymbol{y}_{t} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{t}\right)$ and $P_{t \mid t}=\mathrm{E}\left(\boldsymbol{y}_{t}-\boldsymbol{y}_{t \mid t}\right)\left(\boldsymbol{y}_{t}-\boldsymbol{y}_{t \mid t}\right)^{T}$.

The Kalman Filter

- $\boldsymbol{y}_{t \mid t}$ and $P_{t \mid t}$ can be calculated in terms of $\boldsymbol{y}_{t \mid t-1}$ and $P_{t \mid t-1}$.
- Likewise, $\boldsymbol{y}_{t+1 \mid t}$ and $P_{t+1 \mid t}$ can be calculated in terms of $\boldsymbol{y}_{t \mid t}$ and $P_{t \mid t}$.
- Alternating between filtering and one-step-ahead prediction gives the Kalman filter.

Filtering

$$
\begin{aligned}
& \boldsymbol{y}_{t \mid t}=\boldsymbol{y}_{t \mid t-1}+K_{t}\left(\boldsymbol{z}_{t}-A \boldsymbol{y}_{t \mid t-1}\right) \\
& P_{t \mid t}=\left(I-K_{t} A\right) P_{t \mid t-1}
\end{aligned}
$$

where $K_{t}=P_{t \mid t-1} A^{T}\left(A P_{t \mid t-1} A^{T}+\tau^{2} I\right)^{-1}$.

One-Step Ahead Prediction

$$
\begin{aligned}
& \boldsymbol{y}_{t+1 \mid t}=\boldsymbol{\mu}_{t+1}+\Phi\left(\boldsymbol{y}_{t \mid t}-\boldsymbol{\mu}_{t}\right) \\
& P_{t+1 \mid t}=\Phi P_{t \mid t} \Phi^{T}+\sigma^{2} I
\end{aligned}
$$

Kalman Filter Summary

- The Kalman filter provides an efficient algorithm for state estimation in a state-space model.
- It turns out that having an efficient algorithm for state estimation also simplifies parameter estimation. (See Shumway and Stoffer Ch. 6.)
- To my knowledge, no analog of Kalman filter in space.
- State-space models in space: modeling and efficient algorithms. (Project idea?)

Where are we?

(1) Last Class

(2) Measurement Error Model

(3) State-space models
(4) Wrapping Up

Summary of Today's Lecture

- Extended AR model to allow for measurement noise.
- Measurement noise model is a special case of a state-space model.
- State estimation requires some knowledge about multivariate normals.
- The Kalman filter is a custom algorithm to do state estimation for time series.

Administrivia

- Homework 1 due Monday.
- Workshops start tomorrow.
- Edgar: Thursdays $2: 30-4: 30$ pm in $380-380 \mathrm{~F}$
- Jingshu: Fridays 1-3pm in Sequoia 200
- Please use Piazza!

