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1 Review from Last Lecture

1.1 An Outline So Far

We started off this class by considering the classical statistical model

yi = µi + εi

where µi is typically some function of some covariates (i.e., µi = xT
i β) and εi

i.i.d.∼ N(0, σ2). We
decided that this was unsatisfactory for spatial and temporal data because there may be correlation
between the errors across times or locations.

We allowed for spatial dependence by introducing an autoregressive term:

yi − µi = φ
n∑

j=1

wij(yj − µj) + εi.

Estimation is still simple: we alternate between estimating µ and estimating φ. For time series,
least-squares can be used to estimate φ, but in general, we need to use maximum likelihood.

However, there is a weakness of this model: it assumes that the yi are observed without noise.
We can extend this to a more general state-space model:

State model : yt − µt = φ

n∑
j=1

wij(yt−1 − µt−1) + εt

Data model : zt = ayt + δt

1.2 Kalman Filter

The Kalman filter provided a way to do state estimation without inverting large matrices.

State model : yt − µt = φ(yt−1 − µt−1) + εt

Data model : zt = ayt + δt

Let yt|s denote the best predictor of yt given z1, ..., zs, i.e.,

yt|s
def
= E(yt|z1, ..., zs)

Vt|s
def
= Var(yt|z1, ..., zs)

The Kalman filter iterates between
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1. calculating (yt|t−1, Vt|t−1) from (yt−1|t−1, Vt−1|t−1), and

2. calculating (yt|t, Vt|t) from (yt|t−1, Vt|t−1).

The first of these can be accomplished easily:

yt|t−1 = E(yt|z1, ..., zt−1) = µt + φ(E(yt−1|z1, ..., zt−1)− µt−1)
= µt + φ(yt−1|t−1 − µt−1)

Vt|t−1 = Var(yt|z1, ..., zt−1) = φ2Var(yt−1|z1, ..., zt−1) + σ2

= φ2Vt−1|t−1 + σ2

The second task is a bit trickier. However, using the joint distribution(
yt
zt

) ∣∣ z1, ..., zt−1 ∼ N (( yt|t−1ayt|t−1

)
,

(
Vt|t−1 aVt|t−1
aVt|t−1 a2Vt|t−1 + τ2

))
we can use the conditional distribution formulas to calculate

yt|t = E(yt|z1, ..., zt) = yt|t−1 + aVt|t−1(a
2Vt|t−1 + τ2)−1(zt − ayt|t−1)

Vt|t = Var(yt|z1, ..., zt) = Vt|t−1 − a2V 2
t|t−1(a

2Vt|t−1 + τ2)−1

1.3 Kalman Smoother

The Kalman filter gives us a way to estimate the state yt using only the observations up to time
t, i.e., yt|t = E(yt|z1, ..., zt). This is useful in real-time implementations, where we have to make
estimates of y1, y2, ... in real time as data z1, z2, ... stream in.

However, if we already have all the data in front of us, we might want an estimator that makes
use of all of the data z1, ..., zn. The MMSE estimator in this case is yt|n = E(yt|z1, ..., zn). Is there
a similar algorithm that lets us calculate yt|n recursively?

It turns out that there is! It is called the Kalman smoother. You will derive this on your
homework. The basic idea is to first derive E(yt|yt+1, z1, ..., zt) and Var(yt|yt+1, z1, ..., zt) using the
distribution of (

yt
yt+1

) ∣∣ z1, ..., zt,
and then to calculate

E(yt|z1, ..., zn) = E(E(yt|yt+1, z1, ..., zn)|z1, ..., zn)

= E(E(yt|yt+1, z1, ..., zt)|z1, ..., zn)

and Var(yt|z1, ..., zn) in a similar way.

2 Geostatistics / Kriging

The goal of geostatistics, or kriging, is to predict the value y0 ≡ y(s0) of some process (e.g., mineral)
at a location s∗, given the values at locations yi ≡ y(si), i = 1, ..., n.

Typically, we will assume that y(s) is a Gaussian process, which is completely specified by a

mean function µ(s) and covariance function Σ(s, t)
def
= Cov(y(s), y(t)).
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As before, we will often assume µ(s) = x(s)Tβ (or some other functional form), and we will
assume that we have already de-meaned the process, i.e., y(s) − µ(s), so in what follows, we will
assume that y(s) is a zero-mean process, i.e., E(y(s)) = 0 for all s.

2.1 No measurement error

For predicting y0, it makes sense to find an estimator f(y) that minimizes the mean squared error
(MSE), i.e.,

MSEf (y0) = E[y0 − f(y)]2.

Theorem 1. The choice of f that minimizes MSEf (y0) is

f(y) = E(y0|y).

Proof.

E[y0 − f(y)]2 = E[y0 − E(y0|y) + E(y0|y)− f(y)]2

= E[y0 − E(y0|y)]2 + E[E(y0|y)− f(y)]2 + 2 E[(y0 − E(y0|y))(E(y0|y)− f(y))]︸ ︷︷ ︸
0

.

In this form, we can clearly see that the MSE is minimized by setting f(y) = E(y0|y) so that the
second term is zero.

Now, since

(
y
y0

)
is multivariate Gaussian, we can calculate the MMSE estimator E(y0|y) using

the usual multivariate normal formulas.

Theorem 2. The MMSE predictor for y0 is

ŷ0 = E(y0|y) = Σy0,yΣ−1yyy,

where Σyy denotes the n × n matrix obtained by evaluating the covariances at each of the yi, and

Σy0,y
def
=
[
E(y0y1) · · · E(y0yn)

]
denotes the covariance of y0 with each of the yi.

Proof. This follows from (
y
y0

)
∼ N

((
0
0

)
,

(
Σyy Σy,y0

Σy0,y Σy0,y0

))
and using the conditional expectation formula for multivariate Gaussians.

2.2 Alternative Derivation without Assuming Normality

In many applications, we are not willing to believe the normal assumption. However, the estimator
above is still the best linear unbiased predictor, i.e., it is the best estimator of the form f(y) =∑n

i=1 αiyi = αTy that minimizes

E

(
y0 −

n∑
i=1

αiyi

)2

= E(y20)− 2

n∑
i=1

αiE(y0yi) +

n∑
i=1

n∑
j=1

αiαjE(yiyj)

= Σy0y0 − 2Σy0,yα+αTΣyyα
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By differentiating with respect to α, setting equal to zero, and solving, we see that the optimal
weights are

α̂T = Σy0,yΣ−1yy .

Note that when we calculate ŷ0 = α̂Ty, we get exactly the same estimator as we did in the previous
subsection. This is the approach that is taken by Chapter 2 of the Sherman reference.

2.3 With measurement error

Now suppose we don’t observe yi directly, but only zi = yi + δi, where δi ∼ N(0, τ2). Then the
MMSE estimator is E(y0|z). Since(

z
y0

)
∼ N

((
0
0

)
,

(
Σyy + τ2I Σy,y0

Σy0,y Σy0y0

))
,

the new MMSE (or BLUP, if we’re not assuming normality) estimator is

ŷ0 = E(y0|y) = Σy0,y(Σyy + τ2I)−1y,

4


