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The Frequency Domain

Where are we?

@ The Frequency Domain
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The Frequency Domain

A Time Series
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The Frequency Domain

A Time Series
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Recovering the Weights

Suppose we knew that the only frequencies in the sound were 196, 294,
and 470 Hz and we wanted to know the weights.

y(t1) cos(2m - 196t1) cos(2m - 294t1) cos(2m - 470t4)
= A1+ Ao+ A3
y(tn) cos(2m - 196t,,) cos(2m - 294t1) cos(2m - 470t1)

This is equivalent to

y(t1) cos(2m - 196t1) cos(2m - 294t1)  cos(2mw - 490t;) A\
|- 5 5 z Ao
y(tn) cos(2m - 196t,,) cos(27 - 294¢,,) cos(27 - 490t,,) A3

Can write this as y = A and solve by least squares.
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Harmonic Regression

This is called harmonic regression.

Call:
Im(formula = y ~ cos.196 + co0s.294 + cos.470 - 1)

Coefficients:
cos.196 co0s.294 cos.470
0.2 0.5 0.3

Dennis Sun Stats 253 — Lecture 7 July 14, 2014



The Frequency Domain

Transforming to the Frequency Domain

y = A\

What if we don't know the frequencies?

We can try to include as many sinusoids cos(fxt) in A as possible.

Since y contains n observations, A can be at most n x n.

Now A is full rank, so it is invertible and we also have

A=Ay

A is an equivalent representation of the signal in the frequency
domain. (y is the signal in the time domain.)

e A is a transform that maps A — y. A~! is the inverse transform.
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The Frequency Domain

Why is the frequency domain relevant for sound?

Because the ear is a frequency domain analyzer!
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(Discrete) Fourier Transform

Where are we?

@® (Discrete) Fourier Transform
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Why the Fourier Transform

e In general, calculating A = A~'y requires O(n?) operations
e For special choices of A4, it's possible to do it in O(nlogn) operations.

o For example, we might choose A to contain the complex exponentials

ejfltl ejfntl

A= |, j=vL

ejfltn - ejfntn

This is called the Discrete Fourier Transform (DFT).

o Note: elfvti = cos(fyt;) + jsin(fit;)

e The fast algorithm for computing the DFT is called the Fast Fourier
Transform (FFT).
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(Discrete) Fourier Transform

The Fourier Transform

1 .
DFT:  A(fi) == > ylt)e 7 x=4""
(fr) " ;y( Je y
Inverse DFT : y(t;) = Z )\(fk)ejf’“ti y=AX
k=1

The frequencies fj, and times t; depend on the sampling rate f.
For example, CDs sample at 44.1 kHz, so t; = 0, to = 1/44100.
ti = i/fs, fk = fs . 27rk:/n

The “unitless” form of the DFT might be easier to work with
conceptually, but you have to add the units back in at the end:

1o~ iorpi
DFT : A = - Zyie j2mki/n
=1
n . .
Inverse DFT : yi = Z Aped2rhi/n
k=1
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(Discrete) Fourier Transform

The Fourier Transform

Remember: The A matrix contains complex numbers. So the
frequency domain representation A = A~y is also complex-valued.

For interpretability, we often look at the magnitudes. If

Ak = ag + jbi, then
Ak = \/a% —|—bz.

Note that y = AX must be real-valued. This imposes constraints on
A

Let’s hack around in R: abs (£ft(y))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data
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Application to Seasonality Estimation

Wolfer sunspot data: plot(abs(fft(sunspot)))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data: Plot against period p = 1/f instead of frequency.
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data:
p <~ 1 / ((which(lambda == max(lambda[2:n]))-1)/n)
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(Discrete) Fourier Transform

Summary

e We now have a new representation of data, which is sometimes more
enlightening than the time domain.

e We obtain this by taking the DFT and looking at the magnitudes of
the resulting coefficients.

e We use the DFT (as opposed to some other transform) because it
can be computed efficiently using the FFT.

e There is a 2D version of the DFT for spatial data.
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Spectral Analysis

Where are we?

© Spectral Analysis
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Spectral Analysis

Random Processes

e We've been using the Fourier transform to decompose a function (i.e.,
the trend term in y; = py + €).

e Can we use it to study a random process €;?

e Let's do some R simulations.
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Power Spectral Density

¢ One way to obtain a stationary random process is to take a linear
combination of sinusoids, i.e.,

= Zn: A fr) el Tkt

k=1

where A(fi) are independent N (0, s(f%))-
e The autocorrelation function is

(D ) ()

:ZZE fé 6] (f—fo)tgifeh _ ZE /\2 (fi) ejfkh
———

k=1/¢=1 k=1 s(fr)

C(h) = Ely(t + h)y(t)

e The autocorrelation function C'(h) is a Fourier pair with s(f), which
is called the power spectral density.
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Spectral Analysis

Spectral Representation Theorem

The spectral representation theorem says that all stationary processes
have this representation (at least in continuous time):

o) = [ eirtann
where A is a random zero-mean process with independent increments.

The power spectral density s is the Fourier transform of the
autocorrelation function.

s(f) = / C(h)e 3" dn
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Spectral Density Estimation

How do we estimate s(f) given samples y(¢;), i = 1,...,n?
e Sample PSD: Calculate autocorrelations and take Fourier transform.

=1 3 mein

n
h=—n+1

where C(h) = |h| Z?M/Hh
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Spectral Analysis

Spectral Density Estimation

How do we estimate s(f) given samples y(t;), i = 1,...,n?
e Periodogram: Take Fourier transform and calculate magnitudes
squared.

2
A _ _ IRS o—Jfti ln —jftm
p(f) = = <E;yze J ) (an:lyme if )

11«
ZEZgZ%yme if(i—m)/

i=1 m=1

n—1
LS ] o
— m

_,_/

777/

n—|h|) A
e

e Theorem: As n — oo, 5(f),p(f) = s(f)x3/2.
e So neither § or p estimates s(f) consistently.
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Spectral Analysis

Periodogram Smoothing

Very simple solution: smooth the periodogram.

Let Ny = {k:|fx — f| < B} be all DFT frequencies that are within a
bandwidth B of f. Then:

. 1 .
psmooth(f) = W Z p(fk)

kENf
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Where are we?

O Projects
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Project Proposals

Project proposals are due Friday.

Remember: Goal is to do something useful.

Please make clear in your project proposal what you plan to do with
this project (i.e., publish a paper, release an R package, etc.).

| will send out an (anonymous) survey about the class. When you
complete that survey, you will see a link to a form to submit the
project proposal.
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Project ldeas

e Covariance modeling with kriging that exploits sparse matrix
structure.

e Using spectral density estimation to estimate ARMA parameters.

e Next class: music applications
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Administrivia

Graded Homework 1's will be returned now. Solutions posted.

Please turn in Homework 2.

Homework 3 will be posted in a few hours. This one is a prediction
competition using kriging methods!

Don't forget about the project proposal.
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