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The Frequency Domain

A Time Series
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The Frequency Domain

A Time Series

.2 cos(2π · 196t)
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= .5 cos(2π · 294t)
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The Frequency Domain

Recovering the Weights

Suppose we knew that the only frequencies in the sound were 196, 294,
and 470 Hz and we wanted to know the weights.y(t1)

...
y(tn)

 =

cos(2π · 196t1)
...

cos(2π · 196tn)

λ1+

cos(2π · 294t1)
...

cos(2π · 294t1)

λ2+

cos(2π · 470t1)
...

cos(2π · 470t1)

λ3

This is equivalent toy(t1)
...

y(tn)

 =

cos(2π · 196t1) cos(2π · 294t1) cos(2π · 490t1)
...

...
...

cos(2π · 196tn) cos(2π · 294tn) cos(2π · 490tn)


λ1λ2
λ3


Can write this as y = Aλ and solve by least squares.
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The Frequency Domain

Harmonic Regression

This is called harmonic regression.

Call:

lm(formula = y ~ cos.196 + cos.294 + cos.470 - 1)

Coefficients:

cos.196 cos.294 cos.470

0.2 0.5 0.3
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The Frequency Domain

Transforming to the Frequency Domain

y = Aλ

• What if we don’t know the frequencies?

• We can try to include as many sinusoids cos(fkt) in A as possible.

• Since y contains n observations, A can be at most n× n.

• Now A is full rank, so it is invertible and we also have

λ = A−1y

• λ is an equivalent representation of the signal in the frequency
domain. (y is the signal in the time domain.)

• A is a transform that maps λ→ y. A−1 is the inverse transform.
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The Frequency Domain

Why is the frequency domain relevant for sound?

Because the ear is a frequency domain analyzer!
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(Discrete) Fourier Transform
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(Discrete) Fourier Transform

Why the Fourier Transform

• In general, calculating λ = A−1y requires O(n2) operations

• For special choices of A, it’s possible to do it in O(n log n) operations.

• For example, we might choose A to contain the complex exponentials

A =

e
jf1t1 · · · ejfnt1

...
...

ejf1tn · · · ejfntn

 , j =
√
−1.

This is called the Discrete Fourier Transform (DFT).

• Note: ejfkti = cos(fkti) + j sin(fkti)

• The fast algorithm for computing the DFT is called the Fast Fourier
Transform (FFT).
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(Discrete) Fourier Transform

The Fourier Transform

DFT : λ(fk) =
1

n

n∑
i=1

y(ti)e
−jfkti λ = A−1y

Inverse DFT : y(ti) =

n∑
k=1

λ(fk)e
jfkti y = Aλ

• The frequencies fk and times ti depend on the sampling rate fs.
• For example, CDs sample at 44.1 kHz, so t1 = 0, t2 = 1/44100.
• ti = i/fs, fk = fs · 2πk/n
• The “unitless” form of the DFT might be easier to work with

conceptually, but you have to add the units back in at the end:

DFT : λk =
1

n

n∑
i=1

yie
−j2πki/n

Inverse DFT : yi =

n∑
k=1

λke
j2πki/n
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(Discrete) Fourier Transform

The Fourier Transform

• Remember: The A matrix contains complex numbers. So the
frequency domain representation λ = A−1y is also complex-valued.

• For interpretability, we often look at the magnitudes. If
λk = ak + jbk, then

|λk| =
√
a2k + b2k.

• Note that y = Aλ must be real-valued. This imposes constraints on
λ.

• Let’s hack around in R: abs(fft(y))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data: plot(abs(fft(sunspot)))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data: Plot against period p = 1/f instead of frequency.
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data:
p <- 1 / ((which(lambda == max(lambda[2:n]))-1)/n)
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(Discrete) Fourier Transform

Summary

• We now have a new representation of data, which is sometimes more
enlightening than the time domain.

• We obtain this by taking the DFT and looking at the magnitudes of
the resulting coefficients.

• We use the DFT (as opposed to some other transform) because it
can be computed efficiently using the FFT.

• There is a 2D version of the DFT for spatial data.
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Spectral Analysis
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Spectral Analysis

Random Processes

• We’ve been using the Fourier transform to decompose a function (i.e.,
the trend term in yt = µt + εt).

• Can we use it to study a random process εt?

• Let’s do some R simulations.
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Spectral Analysis

Power Spectral Density

• One way to obtain a stationary random process is to take a linear
combination of sinusoids, i.e.,

y(t) =

n∑
k=1

λ(fk)e
jfkt

where λ(fk) are independent N(0, s(fk)).
• The autocorrelation function is

C(h) = E[y(t+ h)y(t)] = E

[(
n∑

k=1

λ(fk)ejfk(t+h)

)(
n∑

`=1

λ(f`)e
−jf`t

)]

=

n∑
k=1

n∑
`=1

E(λ(fk)λ(f`))e
j(fk−f`)tejfkh =

n∑
k=1

E(λ2(fk))︸ ︷︷ ︸
s(fk)

ejfkh

• The autocorrelation function C(h) is a Fourier pair with s(f), which
is called the power spectral density.
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Spectral Analysis

Spectral Representation Theorem

The spectral representation theorem says that all stationary processes
have this representation (at least in continuous time):

y(t) =

∫
ejftdΛ(f)

where Λ is a random zero-mean process with independent increments.

The power spectral density s is the Fourier transform of the
autocorrelation function.

s(f) =

∫
C(h)e−jfh dh
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Spectral Analysis

Spectral Density Estimation

How do we estimate s(f) given samples y(ti), i = 1, ..., n?

• Sample PSD: Calculate autocorrelations and take Fourier transform.

ŝ(f) =
1

n

n−1∑
h=−n+1

Ĉ(h)e−jfh

where Ĉ(h) =
1

n− |h|
∑
i

yiyi+h.
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Spectral Analysis

Spectral Density Estimation

How do we estimate s(f) given samples y(ti), i = 1, ..., n?

• Periodogram: Take Fourier transform and calculate magnitudes
squared.

p̂(f) =

∣∣∣∣∣ 1n
n∑

i=1

yie
−jfti

∣∣∣∣∣
2

=

(
1

n

n∑
i=1

yie
−jfti

)(
1

n

n∑
m=1

yme−jftm

)

=
1

n

n∑
i=1

1

n

n∑
m=1

yiyme
−jf(i−m)/fs

=
1

n

n−1∑
h=−n+1

[
1

n

∑
m

ym+hym

]
︸ ︷︷ ︸

(n−|h|)
n Ĉ(h)

e−jfh/fs

• Theorem: As n→∞, ŝ(f), p̂(f)⇒ s(f)χ2
2/2.

• So neither ŝ or p̂ estimates s(f) consistently.
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Spectral Analysis

Periodogram Smoothing

Very simple solution: smooth the periodogram.

Let Nf = {k : |fk − f | ≤ B} be all DFT frequencies that are within a
bandwidth B of f . Then:

p̂smooth(f) =
1

|Nf |
∑
k∈Nf

p̂(fk)
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Projects

Where are we?

1 The Frequency Domain

2 (Discrete) Fourier Transform

3 Spectral Analysis

4 Projects

Dennis Sun Stats 253 – Lecture 7 July 14, 2014



Projects

Project Proposals

• Project proposals are due Friday.

• Remember: Goal is to do something useful.

• Please make clear in your project proposal what you plan to do with
this project (i.e., publish a paper, release an R package, etc.).

• I will send out an (anonymous) survey about the class. When you
complete that survey, you will see a link to a form to submit the
project proposal.
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Projects

Project Ideas

• Covariance modeling with kriging that exploits sparse matrix
structure.

• Using spectral density estimation to estimate ARMA parameters.

• Next class: music applications
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Projects

Administrivia

• Graded Homework 1’s will be returned now. Solutions posted.

• Please turn in Homework 2.

• Homework 3 will be posted in a few hours. This one is a prediction
competition using kriging methods!

• Don’t forget about the project proposal.
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