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The Frequency Domain

A Time Series
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The Frequency Domain

A Time Series
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= .5 cos(2π · 294t)
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The Frequency Domain

Recovering the Weights

Suppose we knew that the only frequencies in the sound were 196, 294,
and 470 Hz and we wanted to know the weights.y(t1)

...
y(tn)

 =

cos(2π · 196t1)
...

cos(2π · 196tn)

λ1+

cos(2π · 294t1)
...

cos(2π · 294t1)

λ2+

cos(2π · 470t1)
...

cos(2π · 470t1)

λ3

This is equivalent toy(t1)
...

y(tn)

 =

cos(2π · 196t1) cos(2π · 294t1) cos(2π · 490t1)
...

...
...

cos(2π · 196tn) cos(2π · 294tn) cos(2π · 490tn)


λ1λ2
λ3


Can write this as y = Aλ and solve by least squares.
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The Frequency Domain

Harmonic Regression

This is called harmonic regression.

Call:

lm(formula = y ~ cos.196 + cos.294 + cos.470 - 1)

Coefficients:

cos.196 cos.294 cos.470

0.2 0.5 0.3
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The Frequency Domain

Transforming to the Frequency Domain

y = Aλ

• What if we don’t know the frequencies?

• We can try to include as many sinusoids cos(fkt) in A as possible.

• Since y contains n observations, A can be at most n× n.

• Now A is full rank, so it is invertible and we also have

λ = A−1y

• λ is an equivalent representation of the signal in the frequency
domain. (y is the signal in the time domain.)

• A is a transform that maps λ→ y. A−1 is the inverse transform.
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The Frequency Domain

Why is the frequency domain relevant for sound?

Because the ear is a frequency domain analyzer!
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(Discrete) Fourier Transform
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(Discrete) Fourier Transform

Why the Fourier Transform

• In general, calculating λ = A−1y requires O(n2) operations

• For special choices of A, it’s possible to do it in O(n log n) operations.

• For example, we might choose A to contain the complex exponentials

A =

e
jf1t1 · · · ejfnt1

...
...

ejf1tn · · · ejfntn

 , j =
√
−1.

This is called the Discrete Fourier Transform (DFT).

• Note: ejfkti = cos(fkti) + j sin(fkti)

• The fast algorithm for computing the DFT is called the Fast Fourier
Transform (FFT).
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(Discrete) Fourier Transform

The Fourier Transform

DFT : λ(fk) =
1

n

n∑
i=1

y(ti)e
−jfkti λ = A−1y

Inverse DFT : y(ti) =

n∑
k=1

λ(fk)e
jfkti y = Aλ

• The frequencies fk and times ti depend on the sampling rate fs.
• For example, CDs sample at 44.1 kHz, so t1 = 0, t2 = 1/44100.
• ti = i/fs, fk = fs · 2πk/n
• The “unitless” form of the DFT might be easier to work with

conceptually, but you have to add the units back in at the end:

DFT : λk =
1

n

n∑
i=1

yie
−j2πki/n

Inverse DFT : yi =

n∑
k=1

λke
j2πki/n
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(Discrete) Fourier Transform

The Fourier Transform

• Remember: The A matrix contains complex numbers. So the
frequency domain representation λ = A−1y is also complex-valued.

• For interpretability, we often look at the magnitudes. If
λk = ak + jbk, then

|λk| =
√
a2k + b2k.

• Note that y = Aλ must be real-valued. This imposes constraints on
λ.

• Let’s hack around in R: abs(fft(y))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data: plot(abs(fft(sunspot)))
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data: Plot against period p = 1/f instead of frequency.
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(Discrete) Fourier Transform

Application to Seasonality Estimation

Wolfer sunspot data:
p <- 1 / ((which(lambda == max(lambda[2:n]))-1)/n)
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(Discrete) Fourier Transform

Summary

• We now have a new representation of data, which is sometimes more
enlightening than the time domain.

• We obtain this by taking the DFT and looking at the magnitudes of
the resulting coefficients.

• We use the DFT (as opposed to some other transform) because it
can be computed efficiently using the FFT.

• There is a 2D version of the DFT for spatial data.
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Spectral Analysis
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Spectral Analysis

Random Processes

• We’ve been using the Fourier transform to decompose a function (i.e.,
the trend term in yt = µt + εt).

• Can we use it to study a random process εt?

• Let’s do some R simulations.
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Spectral Analysis

Power Spectral Density

• One way to obtain a stationary random process is to take a linear
combination of sinusoids, i.e.,

y(t) =

n∑
k=1

λ(fk)e
jfkt

where λ(fk) are independent N(0, s(fk)).
• The autocorrelation function is

C(h) = E[y(t+ h)y(t)] = E

[(
n∑

k=1

λ(fk)ejfk(t+h)

)(
n∑

`=1

λ(f`)e
−jf`t

)]

=

n∑
k=1

n∑
`=1

E(λ(fk)λ(f`))e
j(fk−f`)tejfkh =

n∑
k=1

E(λ2(fk))︸ ︷︷ ︸
s(fk)

ejfkh

• The autocorrelation function C(h) is a Fourier pair with s(f), which
is called the power spectral density.
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Spectral Analysis

Spectral Representation Theorem

The spectral representation theorem says that all stationary processes
have this representation (at least in continuous time):

y(t) =

∫
ejftdΛ(f)

where Λ is a random zero-mean process with independent increments.

The power spectral density s is the Fourier transform of the
autocorrelation function.

s(f) =

∫
C(h)e−jfh dh
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Spectral Analysis

Spectral Density Estimation

How do we estimate s(f) given samples y(ti), i = 1, ..., n?

• Sample PSD: Calculate autocorrelations and take Fourier transform.

ŝ(f) =
1

n

n−1∑
h=−n+1

Ĉ(h)e−jfh

where Ĉ(h) =
1

n− |h|
∑
i

yiyi+h.
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Spectral Analysis

Spectral Density Estimation

How do we estimate s(f) given samples y(ti), i = 1, ..., n?

• Periodogram: Take Fourier transform and calculate magnitudes
squared.

p̂(f) =

∣∣∣∣∣ 1n
n∑

i=1

yie
−jfti

∣∣∣∣∣
2

=

(
1

n

n∑
i=1

yie
−jfti

)(
1

n

n∑
m=1

yme−jftm

)

=
1

n

n∑
i=1

1

n

n∑
m=1

yiyme
−jf(i−m)/fs

=
1

n

n−1∑
h=−n+1

[
1

n

∑
m

ym+hym

]
︸ ︷︷ ︸

(n−|h|)
n Ĉ(h)

e−jfh/fs

• Theorem: As n→∞, ŝ(f), p̂(f)⇒ s(f)χ2
2/2.

• So neither ŝ or p̂ estimates s(f) consistently.

Dennis Sun Stats 253 – Lecture 7 July 14, 2014



Spectral Analysis

Periodogram Smoothing

Very simple solution: smooth the periodogram.

Let Nf = {k : |fk − f | ≤ B} be all DFT frequencies that are within a
bandwidth B of f . Then:

p̂smooth(f) =
1

|Nf |
∑
k∈Nf

p̂(fk)
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Projects

Project Proposals

• Project proposals are due Friday.

• Remember: Goal is to do something useful.

• Please make clear in your project proposal what you plan to do with
this project (i.e., publish a paper, release an R package, etc.).

• I will send out an (anonymous) survey about the class. When you
complete that survey, you will see a link to a form to submit the
project proposal.
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Projects

Project Ideas

• Covariance modeling with kriging that exploits sparse matrix
structure.

• Using spectral density estimation to estimate ARMA parameters.

• Next class: music applications
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Projects

Administrivia

• Graded Homework 1’s will be returned now. Solutions posted.

• Please turn in Homework 2.

• Homework 3 will be posted in a few hours. This one is a prediction
competition using kriging methods!

• Don’t forget about the project proposal.
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