Lecture 7
 Frequency Domain Methods

Dennis Sun
Stats 253

July 14, 2014

Outline of Lecture

(1) The Frequency Domain

(2) (Discrete) Fourier Transform
(3) Spectral Analysis
(4) Projects

Where are we?

(1) The Frequency Domain

(2) (Discrete) Fourier Transform

(3) Spectral Analysis
(4) Projects

A Time Series

A Time Series

Recovering the Weights

Suppose we knew that the only frequencies in the sound were 196, 294, and 470 Hz and we wanted to know the weights.

$$
\left(\begin{array}{c}
y\left(t_{1}\right) \\
\vdots \\
y\left(t_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
\cos \left(2 \pi \cdot 196 t_{1}\right) \\
\vdots \\
\cos \left(2 \pi \cdot 196 t_{n}\right)
\end{array}\right) \lambda_{1}+\left(\begin{array}{c}
\cos \left(2 \pi \cdot 294 t_{1}\right) \\
\vdots \\
\cos \left(2 \pi \cdot 294 t_{1}\right)
\end{array}\right) \lambda_{2}+\left(\begin{array}{c}
\cos \left(2 \pi \cdot 470 t_{1}\right) \\
\vdots \\
\cos \left(2 \pi \cdot 470 t_{1}\right)
\end{array}\right) \lambda_{3}
$$

This is equivalent to

$$
\left(\begin{array}{c}
y\left(t_{1}\right) \\
\vdots \\
y\left(t_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(2 \pi \cdot 196 t_{1}\right) & \cos \left(2 \pi \cdot 294 t_{1}\right) & \cos \left(2 \pi \cdot 490 t_{1}\right) \\
\vdots & \vdots & \vdots \\
\cos \left(2 \pi \cdot 196 t_{n}\right) & \cos \left(2 \pi \cdot 294 t_{n}\right) & \cos \left(2 \pi \cdot 490 t_{n}\right)
\end{array}\right)\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right)
$$

Can write this as $\boldsymbol{y}=A \boldsymbol{\lambda}$ and solve by least squares.

Harmonic Regression

```
This is called harmonic regression.
Call:
lm(formula = y ~ cos.196 + cos.294 + cos.470 - 1)
Coefficients:
cos.196 cos.294 cos.470
    0.2 0.5 0.3
```


Transforming to the Frequency Domain

$$
\boldsymbol{y}=A \boldsymbol{\lambda}
$$

- What if we don't know the frequencies?
- We can try to include as many sinusoids $\cos \left(f_{k} t\right)$ in A as possible.
- Since \boldsymbol{y} contains n observations, A can be at most $n \times n$.
- Now A is full rank, so it is invertible and we also have

$$
\boldsymbol{\lambda}=A^{-1} \boldsymbol{y}
$$

- $\boldsymbol{\lambda}$ is an equivalent representation of the signal in the frequency domain. (\boldsymbol{y} is the signal in the time domain.)
- A is a transform that maps $\boldsymbol{\lambda} \rightarrow \boldsymbol{y} . A^{-1}$ is the inverse transform.

Why is the frequency domain relevant for sound?

Because the ear is a frequency domain analyzer!

Where are we?

(1) The Frequency Domain

(2) (Discrete) Fourier Transform
(3) Spectral Analysis
(4) Projects

Why the Fourier Transform

- In general, calculating $\boldsymbol{\lambda}=A^{-1} \boldsymbol{y}$ requires $O\left(n^{2}\right)$ operations
- For special choices of A, it's possible to do it in $O(n \log n)$ operations.
- For example, we might choose A to contain the complex exponentials

$$
A=\left(\begin{array}{ccc}
e^{j f_{1} t_{1}} & \cdots & e^{j f_{n} t_{1}} \\
\vdots & & \vdots \\
e^{j f_{1} t_{n}} & \cdots & e^{j f_{n} t_{n}}
\end{array}\right), \quad j=\sqrt{-1}
$$

This is called the Discrete Fourier Transform (DFT).

- Note: $e^{j f_{k} t_{i}}=\cos \left(f_{k} t_{i}\right)+j \sin \left(f_{k} t_{i}\right)$
- The fast algorithm for computing the DFT is called the Fast Fourier Transform (FFT).

The Fourier Transform

$$
\begin{array}{rll}
\text { DFT : } & \lambda\left(f_{k}\right)=\frac{1}{n} \sum_{i=1}^{n} y\left(t_{i}\right) e^{-j f_{k} t_{i}} & \boldsymbol{\lambda}=A^{-1} \boldsymbol{y} \\
\text { Inverse DFT : } & y\left(t_{i}\right)=\sum_{k=1}^{n} \lambda\left(f_{k}\right) e^{j f_{k} t_{i}} & \boldsymbol{y}=A \boldsymbol{\lambda}
\end{array}
$$

- The frequencies f_{k} and times t_{i} depend on the sampling rate f_{s}.
- For example, CDs sample at 44.1 kHz , so $t_{1}=0, t_{2}=1 / 44100$.
- $t_{i}=i / f_{s}, f_{k}=f_{s} \cdot 2 \pi k / n$
- The "unitless" form of the DFT might be easier to work with conceptually, but you have to add the units back in at the end:

$$
\text { DFT : } \quad \lambda_{k}=\frac{1}{n} \sum_{i=1}^{n} y_{i} e^{-j 2 \pi k i / n}
$$

Inverse DFT:

$$
y_{i}=\sum_{k=1}^{n} \lambda_{k} e^{j 2 \pi k i / n}
$$

The Fourier Transform

- Remember: The A matrix contains complex numbers. So the frequency domain representation $\boldsymbol{\lambda}=A^{-1} \boldsymbol{y}$ is also complex-valued.
- For interpretability, we often look at the magnitudes. If $\lambda_{k}=a_{k}+j b_{k}$, then

$$
\left|\lambda_{k}\right|=\sqrt{a_{k}^{2}+b_{k}^{2}}
$$

- Note that $\boldsymbol{y}=A \boldsymbol{\lambda}$ must be real-valued. This imposes constraints on λ.
- Let's hack around in R: abs(fft(y))

Application to Seasonality Estimation

Wolfer sunspot data

Application to Seasonality Estimation

Wolfer sunspot data: $\operatorname{plot}(\operatorname{abs}(f f t($ sunspot)))

Application to Seasonality Estimation

Wolfer sunspot data: Plot against period $p=1 / f$ instead of frequency.

Application to Seasonality Estimation

Wolfer sunspot data:

$\mathrm{p}<-1 /(($ which $(\mathrm{l}$ ambda $==\max (\operatorname{lambda}[2: n]))-1) / n)$

Summary

- We now have a new representation of data, which is sometimes more enlightening than the time domain.
- We obtain this by taking the DFT and looking at the magnitudes of the resulting coefficients.
- We use the DFT (as opposed to some other transform) because it can be computed efficiently using the FFT.
- There is a 2D version of the DFT for spatial data.

Where are we?

(1) The Frequency Domain

(2) (Discrete) Fourier Transform
(3) Spectral Analysis

(4) Projects

Random Processes

- We've been using the Fourier transform to decompose a function (i.e., the trend term in $y_{t}=\mu_{t}+\epsilon_{t}$).
- Can we use it to study a random process ϵ_{t} ?
- Let's do some R simulations.

Power Spectral Density

- One way to obtain a stationary random process is to take a linear combination of sinusoids, i.e.,

$$
y(t)=\sum_{k=1}^{n} \lambda\left(f_{k}\right) e^{j f_{k} t}
$$

where $\lambda\left(f_{k}\right)$ are independent $N\left(0, s\left(f_{k}\right)\right)$.

- The autocorrelation function is

$$
\begin{aligned}
C(h) & =\mathrm{E}[y(t+h) \overline{y(t)}]=\mathrm{E}\left[\left(\sum_{k=1}^{n} \lambda\left(f_{k}\right) e^{j f_{k}(t+h)}\right)\left(\sum_{\ell=1}^{n} \overline{\lambda\left(f_{\ell}\right)} e^{-j f_{\ell} t}\right)\right] \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n} \mathrm{E}\left(\lambda\left(f_{k}\right) \overline{\lambda\left(f_{\ell}\right)}\right) e^{j\left(f_{k}-f_{\ell}\right) t} e^{j f_{k} h}=\sum_{k=1}^{n} \underbrace{\mathrm{E}\left(\lambda^{2}\left(f_{k}\right)\right)}_{s\left(f_{k}\right)} e^{j f_{k} h}
\end{aligned}
$$

- The autocorrelation function $C(h)$ is a Fourier pair with $s(f)$, which is called the power spectral density.

Spectral Representation Theorem

The spectral representation theorem says that all stationary processes have this representation (at least in continuous time):

$$
y(t)=\int e^{j f t} d \Lambda(f)
$$

where Λ is a random zero-mean process with independent increments.

The power spectral density s is the Fourier transform of the autocorrelation function.

$$
s(f)=\int C(h) e^{-j f h} d h
$$

Spectral Density Estimation

How do we estimate $s(f)$ given samples $y\left(t_{i}\right), i=1, \ldots, n$?

- Sample PSD: Calculate autocorrelations and take Fourier transform.

$$
\hat{s}(f)=\frac{1}{n} \sum_{h=-n+1}^{n-1} \hat{C}(h) e^{-j f h}
$$

where $\hat{C}(h)=\frac{1}{n-|h|} \sum_{i} y_{i} y_{i+h}$.

Spectral Density Estimation

How do we estimate $s(f)$ given samples $y\left(t_{i}\right), i=1, \ldots, n$?

- Periodogram: Take Fourier transform and calculate magnitudes squared.

$$
\begin{aligned}
\hat{p}(f) & =\left|\frac{1}{n} \sum_{i=1}^{n} y_{i} e^{-j f t_{i}}\right|^{2}=\left(\frac{1}{n} \sum_{i=1}^{n} y_{i} e^{-j f t_{i}}\right) \overline{\left(\frac{1}{n} \sum_{m=1}^{n} y_{m} e^{-j f t_{m}}\right)} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{m=1}^{n} y_{i} y_{m} e^{-j f(i-m) / f_{s}} \\
& =\frac{1}{n} \sum_{h=-n+1}^{n-1} \underbrace{\left[\frac{1}{n} \sum_{m} y_{m+h} y_{m}\right]}_{\frac{(n-|h|)}{n} \hat{C}(h)} e^{-j f h / f_{s}}
\end{aligned}
$$

- Theorem: As $n \rightarrow \infty, \hat{s}(f), \hat{p}(f) \Rightarrow s(f) \chi_{2}^{2} / 2$.
- So neither \hat{s} or \hat{p} estimates $s(f)$ consistently.

Periodogram Smoothing

Very simple solution: smooth the periodogram.
Let $N_{f}=\left\{k:\left|f_{k}-f\right| \leq B\right\}$ be all DFT frequencies that are within a bandwidth B of f. Then:

$$
\hat{p}_{\text {smooth }}(f)=\frac{1}{\left|N_{f}\right|} \sum_{k \in N_{f}} \hat{p}\left(f_{k}\right)
$$

Where are we?

(1) The Frequency Domain

(2) (Discrete) Fourier Transform
(3) Spectral Analysis
(4) Projects

Project Proposals

- Project proposals are due Friday.
- Remember: Goal is to do something useful.
- Please make clear in your project proposal what you plan to do with this project (i.e., publish a paper, release an R package, etc.).
- I will send out an (anonymous) survey about the class. When you complete that survey, you will see a link to a form to submit the project proposal.

Project Ideas

- Covariance modeling with kriging that exploits sparse matrix structure.
- Using spectral density estimation to estimate ARMA parameters.
- Next class: music applications

Administrivia

- Graded Homework 1's will be returned now. Solutions posted.
- Please turn in Homework 2.
- Homework 3 will be posted in a few hours. This one is a prediction competition using kriging methods!
- Don't forget about the project proposal.

