Lecture 8
 Time-Frequency Representations

Dennis Sun
Stats 253

July 16, 2014

Outline of Lecture

(1) Short-Time Fourier Transform
(2) Non-negative Matrix Factorization
(3) Audio Source Separation
(4) Wrapping Up

Where are we?

(1) Short-Time Fourier Transform
(2) Non-negative Matrix Factorization
(3) Audio Source Separation
(4) Wrapping Up

Stationary Processes

- We've seen the Spectral Representation Theorem, which says that all stationary processes are essentially just linear combinations of sinusoids.
- So: is a typical music recording stationary?

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

- Idea: Audio is locally stationary.
- Take Fourier transform of only a chunk of a signal at a time.

Short-Time Fourier Transform

Plot log-magnitudes (deciBels) to make contrast clearer.

STFT of the Audio File

play

Summary

- The Short-Time Fourier Transform (STFT) takes in an input signal, and computes local DFTs to obtain a matrix.
- A plot of the magnitudes of this complex-valued matrix is called a spectrogram. (Log-magnitudes are often plotted instead of magnitudes.)
- There is also an inverse STFT (ISTFT), which takes in a complex matrix, computes the IDFT of each column, and adds the signal piece by piece to recover the time-domain signal.

Where are we?

(1) Short-Time Fourier Transform

(2) Non-negative Matrix Factorization

(3) Audio Source Separation

(4) Wrapping Up

Matrix Factorization

In many applications, we wish to decompose a matrix X as a product of two matrices:

$$
X=A B .
$$

The most important example is principal components analysis (PCA).

$$
\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1} & - \\
\vdots & \\
- & \boldsymbol{x}_{n} & -
\end{array}\right] \approx\left[\begin{array}{cc}
d_{1} u_{11} & d_{2} u_{12} \\
\vdots & \vdots \\
d_{1} u_{n 1} & d_{2} u_{n 2}
\end{array}\right]\left[\begin{array}{lll}
- & \boldsymbol{v}_{1}^{T} & - \\
- & \boldsymbol{v}_{2}^{T} & -
\end{array}\right]
$$

Non-Negative Matrix Factorization

$\left[\begin{array}{c}\text { Data } \\ V\end{array}\right] \approx\left[\begin{array}{c}\text { Basis Vectors }\end{array}\right]$

- A matrix factorization where everything is non-negative
- $V \in \mathbb{R}_{+}^{F \times T}$ - original non-negative data
- $W \in \mathbb{R}_{+}^{F \times K}$ - matrix of basis vectors, dictionary elements
- $H \in \mathbb{R}_{+}^{K \times T}$ - matrix of activations, weights, or gains
- Typically, $K \ll F, T$
- A compressed representation of the data
- A low-rank approximation to V

NMF With Spectrogram Data

Figure: NMF of Mary Had a Little Lamb with $K=3$

Factorization Interpretation I

Each column of V is a weighted sum of the columns of W.

Factorization Interpretation II

V is a sum of rank-1 matrices.

$$
V \approx \boldsymbol{w}_{1} \boldsymbol{h}_{1}^{T}+\boldsymbol{w}_{2} \boldsymbol{h}_{2}^{T}+\ldots+\boldsymbol{w}_{K} \boldsymbol{h}_{K}^{T}
$$

The NMF Cost Function

- So far we've been vague by saying $V \approx W H$.
- Formally, NMF solves the optimization problem

$$
\underset{W, H}{\operatorname{minimize}} D(V \mid W H) \text { subject to } W, H \geq 0
$$

for some choice of "distance" measure D.

- Choices of D :
- Euclidean distance: $D(V \mid \hat{V})=\sum_{i, j}\left(V_{i j}-\hat{V}_{i j}\right)^{2}$
- Kullback-Leibler (KL) divergence:

$$
D(V \mid \hat{V})=\sum_{i, j} V_{i j} \log \frac{V_{i j}}{\hat{V}_{i j}}-V_{i j}+\hat{V}_{i j}
$$

- KL divergence is more appropriate for audio.

Algorithms for NMF

- General Strategy: Fix W and update H. Fix H and update W. Iterate until convergence.
- The two problems are symmetric. So let's look at fixing W and updating H (for KL divergence).

$$
D(V \mid W H)=-\sum_{i, j} V_{i j} \log \sum_{k} W_{i k} H_{k j}+\sum_{i, j} \sum_{k} W_{i k} H_{k j}+\text { const. }
$$

- This cannot be minimized in closed form for H. (Try it!)
- Suppose $\tilde{H}_{k j}$ is our current guess and define $\pi_{i j k}=\frac{W_{i k} H_{k j}}{\sum_{k} W_{i k} H_{k j}}$. Then we can write

$$
D(V \mid W H)=-\sum_{i, j} V_{i j} \log \sum_{k} \pi_{i j k} \frac{W_{i k} H_{k j}}{\pi_{i j k}}+\sum_{i, j} \sum_{k} W_{i k} H_{k j}+\text { const. }
$$

and use Jensen's inequality on the log.

- This "majorizing" function can easily be minimized!

Where are we?

(1) Short-Time Fourier Transform
(2) Non-negative Matrix Factorization
(3) Audio Source Separation
(4) Wrapping Up

The Problem of Source Separation

How do we recover the individual sources from just the mixture?

Source Separation Pipeline

$$
V \approx W H
$$

Ideal Pipeline:

(1) Find a segment of music where only the backing band is playing. Take the magnitude STFT and run NMF. Keep $W_{b g}$.
(2) Find a segment of music where only vocals are present. Take the magnitude STFT and run NMF. Keep $W_{\text {vocal }}$.
(3) Now take the STFT of the mixture. Run NMF on the magnitudes, where $W_{b g}$ and $W_{\text {vocal }}$ are fixed, and estimate $H_{b g}$ and $H_{\text {vocal }}$.

$$
V \approx\left[\begin{array}{ll}
W_{b g} & W_{v o c a l}
\end{array}\right]\left[\begin{array}{c}
H_{b g} \\
H_{v o c a l}
\end{array}\right]
$$

(4) The backing band magnitudes can be recovered as $W_{b g} H_{b g}$. Use the phases from the STFT, and take the ISTFT to recover the time-domain signal.

Source Separation Pipeline

$$
V \approx W H
$$

In practice:

(1) Find a segment of music where only the backing band is playing. Take the magnitude STFT and run NMF. Keep $W_{b g}$.
(2) Find a segment of music where only vocals are present. Take the magnitude STFT and run NMF. Keep $W_{\text {vocal }}$.
(3) Now take the STFT of the mixture. Run NMF on the magnitudes, where $W_{b g}$ and $W_{\text {vocat }}$ are fixed, and estimate $W_{v o c a l}, H_{b g}$ and $H_{v o c a l}$.

$$
V \approx\left[\begin{array}{ll}
W_{b g} & W_{v o c a l}
\end{array}\right]\left[\begin{array}{c}
H_{b g} \\
H_{v o c a l}
\end{array}\right]
$$

(4) The backing band magnitudes can be recovered as $W_{b g} H_{b g}$. Use the phases from the STFT, and take the ISTFT to recover the time-domain signal.

A Demo

Let's try this in R!

Where are we?

(1) Short-Time Fourier Transform

(2) Non-negative Matrix Factorization
(3) Audio Source Separation
(4) Wrapping Up

Projects

- Project proposals due Friday. (Please fill in survey first.)
- I will be available after class. I will also be available tomorrow morning. Please e-mail me to schedule a time.

Homework 3

- Geostatistics packages in R: gstat and geoR
- Prediction competition

