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Last Words about the Frequency Domain

Why is the frequency domain useful?

Time Frequency

=⇒
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Last Words about the Frequency Domain

Why is the frequency domain useful?

Time Frequency

=⇒
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Last Words about the Frequency Domain

Why is the frequency domain useful?

The frequency domain more often captures our intuition
about when two signals are “similar”.
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Point Processes in Time and Space
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Point Processes in Time and Space

Trinity of Spatial Statistics

Today we complete the “trinity” of spatial statistics...

South African Witwatersrand Gold Reef (grams per ton)

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 10

20

30

40

50

60

70

Lattice Data Geostatistics Point Processes

Dennis Sun Stats 253 – Lecture 9 July 21, 2014 Vskip0pt



Point Processes in Time and Space

Point Processes
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Point Processes in Time and Space

Marked Point Processes
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Point Processes in Time and Space

Point Processes

• The distinguishing feature of point processes is that the locations si
are now random.

• There may or may not be labels y(si) associated with the points.

• Basic model: Poisson processes
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Point Processes in Time and Space

Poisson Processes in Time

0 10 20 30 40

• N(t): number of events that have occurred up to time t

• Properties:

1 N(t+ h)−N(t) ∼ Pois(λh)
2 If s < t < u < v, then N(t)−N(s) is independent of N(v)−N(u).

• Question: Is this well-defined? (i.e., Can I simulate a process that
has these properties?)
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Point Processes in Time and Space

Simulating a Temporal Poisson Process: Method 1

• Generate waiting times Wi
iid∼ Exp(λ).

• Then, the first event occurs at time W1, the second at time
W1 +W2, etc.

• Formally, N(t) = max{k :
∑k

i=1Wi ≤ t}.
• Claim: N(t) has the desired properties.

1 N(t+ h)−N(t) ∼ Pois(λh)
2 If s < t < u < v, then N(t)−N(s) is independent of N(v)−N(u).
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Point Processes in Time and Space

Simulating a Temporal Poisson Process: Method 2

• This method simulates a Poisson process on [0, T ].

• Generate N(T ) ∼ Pois(λT ).

• Generate si ∼ Unif(0, T ) for i = 1, ..., N(T ).

• Question: Why is N(t+ h)−N(t) ∼ Pois(λh)?
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Point Processes in Time and Space

How do we generalize this to space?

D

N(A) ∼ Pois(λ|A|)
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Point Processes in Time and Space

Poisson Processes in Space

D

N(A) and N(B) are independent if A ∩B = ∅.
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Point Processes in Time and Space

Is this well-defined?

• We can generalize Method 2 for temporal processes:

• Generate N(D) ∼ Pois(λ|D|).
• Generate si ∼ Unif(D), i = 1, ..., N(D).

• Method 1 doesn’t generalize. /
• Once again, the moral of this class:

Temporal processes are easy, spatial processes are hard.
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Point Processes in Time and Space

Parameter Estimation

• How do you estimate λ?

• Easy: λ̂ = N(D)
|D| .

• Many ways to justify this, e.g., MLE.
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Inhomogeneous Poisson Processes
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Inhomogeneous Poisson Processes

The Inhomogeneous Poisson Process

• This model is restrictive: assumes points are equally likely to be
anywhere in D.

• Generalization: suppose there is a density λ(·) on D. Then

N(A) ∼ Pois

(∫
A
λ(s) ds

)
.

• This is called an inhomogeneous Poisson process.
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Inhomogeneous Poisson Processes

Testing for Homogeneity

• How do we test if our process is homogeneous? (Another term is
complete spatial randomness.)

• Let’s try to generate a homogeneous process in R.

• General strategy for devising tests:
• Come up with some test statistic, e.g.,

Ĝ(r) =
1

N(D)
#{si whose nearest neighbor is closer than r}

K̂(r) =
1

λ̂

#{(i, j) : d(si, sj) ≤ r}
N(D)

• Simulate test statistic under null hypothesis.
• Compare with observed value of test statistic.
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Inhomogeneous Poisson Processes

Estimating λ(·)
Kernel density estimation: Choose a kernel K that integrates to 1:∫

K(s, s′) ds = 1.

s′

Place a kernel centered at each si. Then the estimator is

λ̂(s) =

N(D)∑
i=1

K(s, si).
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Inhomogeneous Poisson Processes

Estimating λ(·)
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Inhomogeneous Poisson Processes

Estimating λ(·)
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Inhomogeneous Poisson Processes

Estimating λ(·)

May need to correct for edge effects:

λ̂(s) =

N(D)∑
i=1

1∫
DK(s, si) dsi

K(s, si).
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Inhomogeneous Poisson Processes

Final Issues

• How do you simulate from an inhomogeneous point process?

• Also possible to model λ(s) parametrically, e.g.,

log λ(s) = x(s)Tβ
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Second-Order Properties
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Second-Order Properties

Why Second-Order Properties?

Processes may still exhibit clustering or inhibition.
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Second-Order Properties

Examples of Clustering and Inhibition
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Second-Order Properties

Second-Order Intensity

λ(s) = lim
|ds|→0

E(N(ds))

|ds|
µ(s) = E(y(s))

λ2(s, s
′) = lim

|ds|→0

E(N(ds)N(ds′))

|ds||ds′|
Σ(s, s′) = E(y(s)y(s′))− µ(s)µ(s′)

λ2 is called the second-order intensity.

A process is stationary if λ(s) ≡ λ and λ2(s, s
′) = λ2(s− s′).
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Second-Order Properties

Ripley’s K-function

• λ2 is hard to estimate.
• For stationary and isotropic processes, K-function is used instead:

K(r) =
1

λ
E#{events within distance r of a randomly chosen event}

=
1

λ
E

 1

N(D)

N(D)∑
i=1

∑
j 6=i

1{d(si, sj) ≤ r}


• This has a natural estimator:

K̂(r) =
1

λ̂

#{(i, j) : d(si, sj) ≤ r}
N(D)

• General strategy for fitting models:

minimize
θ

∫ r0

0
w(r)(K̂(r)−Kθ(r))

2 dr
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Second-Order Properties

Handling Inhomogeneity

• What if λ(s) 6≡ λ but is known?

• Solution: Re-weight distances by chance of observing event.

KI(r) = E

 1

|D|

N(D)∑
i=1

∑
j 6=i

1{d(si, sj) ≤ r}
λ(si)λ(sj)


K̂I(r) =

1

|D|

N(D)∑
i=1

∑
j 6=i

1{d(si, sj) ≤ r}
λ(si)λ(sj)

• All computations proceed with KI and K̂I instead of K and K̂.
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Second-Order Properties

Modeling Clustering: Neyman-Scott Process

• Parent events are generated from Poisson process with intensity ρ(·).

• Each parent has S offspring, where S
iid∼ pS .

• Offspring are located i.i.d. around their parent, according to some
density function f(·).

• The process is the resulting offspring.

[Check: If ρ(·) ≡ ρ and f(s) = f(||s||), then stationary and isotropic.]
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Second-Order Properties

Modeling Clustering: Neyman-Scott Process
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> cauchy.estK(redwood)

Fits Neyman-Scott process with Cauchy ker-
nel:

• parents from Poisson process with
intensity κ

• S ∼ Pois(µ)

• f(s) = 1
2πω2

(
1 + ||s||2

ω2

)−3/2

Dennis Sun Stats 253 – Lecture 9 July 21, 2014 Vskip0pt



Second-Order Properties

Modeling Clustering: Neyman-Scott Process
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Minimum contrast fit (object of class minconfit)

Model: Cauchy process

Fitted by matching theoretical K function to Kest(redwood)

Parameters fitted by minimum contrast ($par):

kappa eta2

12.446917419 0.008454113

Derived parameters of Cauchy process ($modelpar):

kappa omega mu

12.44691742 0.04597312 4.98115300

Converged successfully after 259 iterations

Starting values of parameters:

kappa eta2

1 1

Domain of integration: [ 0 , 0.25 ]

Exponents: p= 2, q= 0.25
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Second-Order Properties

Modeling Inhibition: Strauss Process

p(s1, ..., sn) =
βnγ#{(i,j): d(si,sj)≤δ}

α(β, γ)

γ ∈ [0, 1], so last term penalizes processes that have points close together.

• γ = 1: no inhibition

• γ = 0: no event can be within δ of another (“hard-core” model)
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Second-Order Properties

Modeling Inhibition: Strauss Process
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> ppm(Q = cells, trend = ~ 1,

interaction = Strauss(0.1))

Fits Strauss model with δ = 0.1.
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Second-Order Properties

Modeling Inhibition: Strauss Process
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Stationary Strauss process

First order term:

beta

563.0123

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0389

Relevant coefficients:

Interaction

-3.247058

For standard errors, type coef(summary(x))
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Wrapping Up
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Wrapping Up

Summary

• Point processes are distinguished by the randomness of the locations.

• Poisson processes are the simplest model for point processes.

• More complex models (Neyman-Scott, Strauss) can capture
second-order interactions.

• Use the spatstat package in R!
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Wrapping Up

Homeworks

• Homework 3 deadline extended to Friday.

• Winners of prediction competition will be announced next Monday.

• Homework 4a and b: students doing a project need only complete one
of these.

• Homework 4a will be posted Wednesday, 4b by the end of the week.
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Wrapping Up

Projects

• Please submit your project proposal if you haven’t done so already!

• I will start responding to them today.

Dennis Sun Stats 253 – Lecture 9 July 21, 2014 Vskip0pt


	Last Words about the Frequency Domain
	Point Processes in Time and Space
	Inhomogeneous Poisson Processes
	Second-Order Properties
	Wrapping Up

